[1]
B. Luthar, S. Kropivnik, Class, cultural capital, and the mobile phone, Czech Sociol. Rev. 47 (6) (2011) 1091–1119.
DOI: 10.13060/00380288.2011.47.6.01
Google Scholar
[2]
S. Sthiannopkao, M.H. Wong, Handling e-waste in developed and developing countries: initiatives, practices, and consequences, Sci. Total Environ. 463 (2013) 1147–1153.
DOI: 10.1016/j.scitotenv.2012.06.088
Google Scholar
[3]
K.S. Kumar, K. Baskar, Recycling of E-plastic waste as a construction material in developing countries, J. Mater. Cycles Waste Manage. 17 (4) (2015) 718– 724.
DOI: 10.1007/s10163-014-0303-5
Google Scholar
[4]
K. Kumar, K. Baskar, Response surfaces for fresh and hardened properties of concrete with e-waste (HIPS), J. Waste Manage. (2014) 1–14.
DOI: 10.1155/2014/517219
Google Scholar
[5]
S. Needhidasan, M. Samuel, R. Chidambaram, Electronic waste–an emerging threat to the environment of urban India, J. Environ. Health Sci. Eng 12 (1) (2014) 36.
DOI: 10.1186/2052-336x-12-36
Google Scholar
[6]
X.M. Tian, Y.F. Wu, LeiLv Zhetan, Recent development of recycling lead from scrap CRTs: a technological review, Waste Manag. 57 (2016) 176–186.
DOI: 10.1016/j.wasman.2015.09.004
Google Scholar
[7]
R. Widmer, H. Oswald-Krapf, D. Sinha- Khetriwal, M. Schnellmann, H. Böni, Global perspectives on e-waste, Environmental impact assessment review 25 (5) (2005) 436–458.
DOI: 10.1016/j.eiar.2005.04.001
Google Scholar
[8]
S. Badur, R. Chaudhary, Utilization of hazardous wastes and by-products as a green concrete material through S/S process: a review, Rev. Adv. Mater. Sci 17 (1–2) (2008) 42–61.
Google Scholar
[9]
A. Pariatamby, D. Victor, Policy trends of e-waste management in Asia, J. Mater. Cycles Waste Manage. 15 (4) (2013) 411–419.
DOI: 10.1007/s10163-013-0136-7
Google Scholar
[10]
R. Mukherjee, Anticipating ruinations: ecologies of make do'and 'left with,, J. Visual Cult. 16 (3) (2017) 287–309.
DOI: 10.1177/1470412917740884
Google Scholar
[11]
V. Goodship, A. Stevels (Eds.), Waste Electrical and Electronic Equipment (WEEE) Handbook, Elsevier, (2012).
DOI: 10.1533/9780857096333
Google Scholar
[12]
R. Kalidoss, R. Kothalam, G. Vattikondala, Recycling E-Waste for Hydrogen Energy Production and Replacement as Building Construction Materials" in Book "Energy from Waste,, CRC Press, Taylor & Francis, (2022) 239-252.
DOI: 10.1201/9781003178354-19
Google Scholar
[13]
O.C. Eneh, Recyclability potentials of beryllium oxide from E-waste items in Nigeria, J. Appl. Sci. 11 (2) (2011) 397–400.
DOI: 10.3923/jas.2011.397.400
Google Scholar
[14]
Hossain, Md. Sahadat, Sulala M.Z.F. Al-Hamadani, and Md. Toufiqur Rahman. E-Waste: A Challenge for Sustainable Development., Journal of Health and Pollution 5, no. 9 (December 2015): 3–11. https://doi.org/10.5696/2156-9614-5-9.3.
DOI: 10.5696/2156-9614-5-9.3
Google Scholar
[15]
H. Itoh, The recent trend of e-waste recycling and rare metal recovery in Japan, WIT Trans. Ecol. Environ. 180 (2014) 3–14.
Google Scholar
[16]
S. Luhar, S. Chaudhary, U. Dave, Effect of different parameters on the compressive strength of rubberized geopolymer concrete, in: Salmabanu Luhar (Ed.), Multidisciplinary Sustainable Engineering: Current and Future Trends, 2016, p.77–86.
DOI: 10.1201/b20013-13
Google Scholar
[17]
S. Luhar, U. Khandelwal, A study on water absorption and sorptivity of geopolymer concrete, SSRG Int. J. Civ. Eng. (2015) 1–10.
DOI: 10.14445/23488352/ijce-v2i8p101
Google Scholar
[18]
S. Luhar, P. Chaudhary, I. Luhar, Influence of Steel Crystal Powder on Performance of Recycled Aggregate Concrete vol. 431 (2018) 102003.
DOI: 10.1088/1757-899x/431/10/102003
Google Scholar
[19]
S. Luhar, S. Gourav, A review paper on self healing concrete, J. Civ. Eng. Res. 5 (3) (2015) 53–58.
Google Scholar
[20]
S. Luhar, U. Khandelwal, Compressive strength of translucent concrete, Int. J. Eng. Sci. Emerg. Technol. 8 (2) (2015) 52–54.
Google Scholar
[21]
S. Luhar, S. Chaudhary, U.V. Dave, A brief review on geopolymer concrete, 5th Nirma University International Conference on Engineering, Ahmedabad, Gujarat, India, 26–28 November, (2015).
DOI: 10.1201/b20013-13
Google Scholar
[22]
S. Luhar, S. Chaudhary, I. Luhar, Thermal resistance of fly ash based rubberized geopolymer concrete, J. Build. Eng. (2018) 420–428.
DOI: 10.1016/j.jobe.2018.05.025
Google Scholar
[23]
P.K. Prasanna, M.K. Rao, Strength variations in concrete by using E-waste as coarse aggregate, Int. J. Educ. Appl. Res. 4 (2) (2014) 82–84.
Google Scholar
[24]
M. Shahria Alam, E. Slater, A.H.M. MuntasirBillah, Green concrete made with RCA and FRP scrap aggregate: fresh and hardened properties, J. Mater. Civ. Eng. 25 (12) (2012) 1783–1794.
DOI: 10.1061/(asce)mt.1943-5533.0000742
Google Scholar
[25]
Ö. Çakır, Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives, Constr. Build. Mater. 68 (2014) 17–25.
DOI: 10.1016/j.conbuildmat.2014.06.032
Google Scholar
[26]
G. Andreu, E. Miren, Experimental analysis of properties of high performance recycled aggregate concrete, Constr. Build. Mater. 52 (2014) 227–235.
DOI: 10.1016/j.conbuildmat.2013.11.054
Google Scholar
[27]
A. Kumar, M. Holuszko, D.C.R. Espinosa, E-waste: an overview on generation, collection, legislation and recycling practices, Res. Conserv. Recycl. 122 (2017) 32–42.
DOI: 10.1016/j.resconrec.2017.01.018
Google Scholar
[28]
A. Palos, N.A. D'Souza, C.T. Snively, R.F. Reidy III, Modification of cement mortar with recycled ABS, Cem. Concr. Res. 31 (7) (2001) 1003–1007.
DOI: 10.1016/s0008-8846(01)00531-2
Google Scholar
[29]
V.S. Damal, S.S. Londhe, Utilization of electronic waste plastic in concrete, Int. J. Eng. Res. Appl. 5 (4) (2015) 35–38.
Google Scholar
[30]
V.S. Damal, S.S. Londhe, Utilization of electronic waste plastic in concrete, Int. J. Eng. Res. Appl. 5 (4) (2015) 35–38.
Google Scholar
[31]
P.A. Manatkar, G.P. Deshmukh, Use of non-metallic e-waste as a coarse aggregate in a concrete, IJRET: Int. J. Res. Eng. Technol. eISSN (2015) 2319–11163.
Google Scholar
[32]
P. Hadi, M. Xu, C.S. Lin, C.W. Hui, G. McKay, Waste printed circuit board recycling techniques and product utilization, J. Hazard. Mater. 283 (2015) 234–243.
DOI: 10.1016/j.jhazmat.2014.09.032
Google Scholar
[33]
B. Ghosh, M.K. Ghosh, P. Parhi, P.S. Mukherjee, B.K. Mishra, Waste printed circuit boards recycling: an extensive assessment of current status, J. Clean. Prod. 94 (2015) 5–19.
DOI: 10.1016/j.jclepro.2015.02.024
Google Scholar
[34]
R. Siddique, J. Khatib, I. Kaur, Use of recycled plastic in concrete: a review, Waste Manage. 28 (10) (2008) 1835–1852.
DOI: 10.1016/j.wasman.2007.09.011
Google Scholar
[35]
A. Remadnia, R.M. Dheilly, B. Laidoudi, M. Quéneudec, Use of animal proteins as foaming agent in cementitious concrete composites manufactured with recycled PET aggregates, Constr. Build. Mater. 23 (2009) 3118–3123.
DOI: 10.1016/j.conbuildmat.2009.06.027
Google Scholar
[36]
A. Shayan, A. Xu, Value-added utilisation of waste glass in concrete, Cem. Concr. Res. 34 (1) (2004) 81–89.
DOI: 10.1016/s0008-8846(03)00251-5
Google Scholar
[37]
Tapase Rajashree, Kadam Digvijay, Tapase Anand, Consumption of electronic waste in quality enhancement of road, J. Environ. Res. Develop. 3 (9) (2015) 1010–1013.
Google Scholar
[38]
Pankaj P. Shedame, Nikhil H. Pitale, Experimental study of bituminous concrete containing plastic waste material, IOSR J. Mech. Civ. Eng. 11 (3) (2014) 37–45.
Google Scholar
[39]
D. Kar, M. Panda, J.P. Giri, Influence of fly-ash as a filler in bituminous mixes, ARPN J. Eng. Appl. Sci. 9 (6) (2014) 895–900.
Google Scholar
[40]
B.D. Priyanka, P.A. Kumar, K. Dedeepya, A. Shabuddin, S.K. Rao, Use of fly ash as mineral filler for bituminous paving mixes, IJRET: Int. J Res. Eng. Technol. (2015) 56–60.
DOI: 10.15623/ijret.2015.0413010
Google Scholar