Effect of Heat Treatment on Microstructure Evolution in DD9 Single Crystal Turbine Blade

Article Preview

Abstract:

The microstructural evolution of DD9 single crystal superalloy turbine blade was studied after heat treatment. In comparison to the as-cast microstructures where the sizes of the γ′ precipitates have an obvious difference between the dendritic core and interdendritic regions, the γ′ sizes of the heat-treated microstructures tend to be uniform and more cubic. And in the heat-treated microstructures, the γ′ sizes and the related size dispersion degrees of the dendritic cores are slightly increased, while those of the interdendritic regions are obviously decreased. After all, all the γ′ sizes follow the normal distribution law. With the raise of section thickness, the γ′ sizes tend to increase and the related size dispersion degrees are enhanced during the cooling process after heat treatment, and the γ-γ′ eutectics are dissolved, left little residual eutectics and pores.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1072)

Pages:

95-102

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.C. Reed. The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, (2006).

Google Scholar

[2] T.M. Pollock, S. Tin. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propul. Power 22 (2006) 361-374.

DOI: 10.2514/1.18239

Google Scholar

[3] P. Caron, T. Khan. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp. Sci. Technol. 3 (1999): 513-523.

DOI: 10.1016/s1270-9638(99)00108-x

Google Scholar

[4] J.R. Li, S.Z. Liu, X.G. Wang, Z.X. Shi, J.Q. Zhao. Development of a low-cost third generation single crystal superalloy DD9. Superalloys 2016, TMS, Warrendale (PA), 2016, pp.57-63.

DOI: 10.1002/9781119075646.ch6

Google Scholar

[5] Z.X. Shi, X.G. Wang, S.Z. Liu, J.R. Li. Rotary bending high cycle fatigue properties of DD9 single crystal superalloy at 800°C. Mater. Mech. Eng. 40 (2016):16-19.

Google Scholar

[6] Z.X. Shi, J.R. Li, S.Z. Liu. Influence of withdrawal rate on tensile and stress rupture properties of the single crystal superalloy DD9. Mater. Sci. For. 747/748 (2013):625-628.

DOI: 10.4028/www.scientific.net/msf.747-748.625

Google Scholar

[7] X.G. Wang, J.R. Li, Z.X. Shi, S.Z. Liu. Effect of solid solution heat treatment on microstructures of the third generation single crystal supperally DD9. Mater. Sci. For. 747/748 (2013):549-558.

DOI: 10.4028/www.scientific.net/msf.747-748.549

Google Scholar

[8] X.G. Wang, J.R. Li, J. Yu, S.Z. Liu, Z.X. Shi, X.D Yue. Tensile anisotropy of single crystal superalloy DD9. Acta Metall. Sinica 51 (2015): 1253-1260.

Google Scholar

[9] W.P. Yang, J.R. Li, S.Z. Liu, Z.X. Shi, J.Q. Zhao, X.G. Wang. Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9 from 760 to 1100 °C. Trans Nonferrous Met Soc China 29 (2019):558-568.

DOI: 10.1016/s1003-6326(19)64964-2

Google Scholar

[10] A. Heckl, S. Neumeier, M. Göken, R.F. Singer. The effect of Re and Ru on γ/γ' microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys. Mater. Sci. Eng. 528 (2011) 3435-3444.

DOI: 10.1016/j.msea.2011.01.023

Google Scholar

[11] Z. Zhu, H. Basoalto, N. Warnken, R.C. Reed. A model for the creep deformation behaviour of nickel-based single crystal superalloys. Acta Mater. 60 (2012):4888-4900.

DOI: 10.1016/j.actamat.2012.05.023

Google Scholar

[12] A. Ma, D. Dye, R.C. Reed. A model for the creep deformation behaviour of single-crystal superalloy CMSC-4. Acta Mater. 56 (2008):1657-1670.

DOI: 10.1016/j.actamat.2007.11.031

Google Scholar

[13] T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada. Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction. Acta Mater. 52 (2004):3737-3744.

DOI: 10.1016/j.actamat.2004.04.028

Google Scholar

[14] J.M Dong, J.R. Li, R.D. Mu. Fatigue behavior of thermal barrier coated DD6 single crystal superalloy at 900°C. Phy. Eng. Meta. Mater. 217 (2019):347-356.

DOI: 10.1007/978-981-13-5944-6_34

Google Scholar

[15] J.M Dong, J.R. Li. Effect of etching on fatigue properties of DD6 single crystal superalloy. J. of Mater. Eng. and Perf. 29 (2020):3195-3204.

DOI: 10.1007/s11665-020-04865-z

Google Scholar

[16] H.J. Xie, J.R. Li, X.D. Yue. Influence of heat treatment temperature on the microstructures and high cycle fatigue properties of DD6 single crystal superalloy. Mater. Sci. For. 898 (2017):480-486.

DOI: 10.4028/www.scientific.net/msf.898.480

Google Scholar

[17] P. Caron. High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloys 2000, TMS, Warrendale (PA), 2000, pp.737-746.

DOI: 10.7449/2000/superalloys_2000_737_746

Google Scholar

[18] B. Ruttert, C. Meid, L.M. Roncery, I. Lopez-Galilea, M. Bartsch, W. Theisen. Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy. Scripta Mater. 143 (2018):139-143.

DOI: 10.1016/j.scriptamat.2018.06.036

Google Scholar

[19] P. Hallensleben, H. Schaar, P. Thome, N. Jöns, A. Jafarizadeh, I. Steinbach, G. Eggeler, J. Frenzel. On the evolution of cast microstructures during processing of single crystal Ni-base superalloys using a Bridgman seed technique. Mater. Des. 128 (2017):98-111.

DOI: 10.1016/j.matdes.2017.05.001

Google Scholar

[20] Y.P. Xue, J.R. Li, J.Q. Zhao, J.C. Xiong. The precipitation behavior of γ' phase in single crystal Ni-based DD6 superalloy for turbine blade. Mater. Sci. For. 898 (2017):549-558.

DOI: 10.4028/www.scientific.net/msf.898.534

Google Scholar

[21] Y.B. Zhang, L. Liu, T.W. Huang, Y.F. Li, Z.Q. Jie, J. Zhang, W.C. Yang, H.Z. Fu. Investigation on remelting solution heat treatment for nickel-based single crystal superalloys. Scripta Mater. 136 (2017):74-77.

DOI: 10.1016/j.scriptamat.2017.04.016

Google Scholar

[22] X.W. Li, L. Wang, J.S. Dong, L.H. Lou, J. Zhang. Evolution of micro-pores in a single-crystal nickel-based superalloy during solution heat treatment. Metall. Mater. Trans. 48 (2017):2682-2685.

DOI: 10.1007/s11661-017-4057-2

Google Scholar

[23] K.A. Unocic, D. Shin, X. Sang, E. Cakmak, and P.F. Tortorelli. Single-step aging treatment for a precipitation-strengthened Ni-based alloy and its influence on high-temperature mechanical Behavior. Scr. Mater. 162 (2019):416-420.

DOI: 10.1016/j.scriptamat.2018.11.045

Google Scholar

[24] Fuchs GE. Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng. 300 (2001):52-60.

DOI: 10.1016/s0921-5093(00)01776-7

Google Scholar

[25] F. Wang, D.X. Ma, J. Zhang, A. Bührig-Polaczek. Investigation of segregation and density profiles in the mushy zone of CMSX-4 superalloys solidified during downward and upward directional solidification processes. J. Alloys Comp. 620 (2015) 24-30.

DOI: 10.1016/j.jallcom.2014.09.103

Google Scholar

[26] G. Liu, L. Liu, X.B. Zhao, B.M. Ge, J. Zhang, H.Z. Fu. Effects of Re and Ru on the solidification characteristics of nickel-base single-crystal superalloys. Metall. Mater. Trans. 42 (2011):2733-2741.

DOI: 10.1007/s11661-011-0673-4

Google Scholar