[1]
R.C. Reed. The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, (2006).
Google Scholar
[2]
T.M. Pollock, S. Tin. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propul. Power 22 (2006) 361-374.
DOI: 10.2514/1.18239
Google Scholar
[3]
P. Caron, T. Khan. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp. Sci. Technol. 3 (1999): 513-523.
DOI: 10.1016/s1270-9638(99)00108-x
Google Scholar
[4]
J.R. Li, S.Z. Liu, X.G. Wang, Z.X. Shi, J.Q. Zhao. Development of a low-cost third generation single crystal superalloy DD9. Superalloys 2016, TMS, Warrendale (PA), 2016, pp.57-63.
DOI: 10.1002/9781119075646.ch6
Google Scholar
[5]
Z.X. Shi, X.G. Wang, S.Z. Liu, J.R. Li. Rotary bending high cycle fatigue properties of DD9 single crystal superalloy at 800°C. Mater. Mech. Eng. 40 (2016):16-19.
Google Scholar
[6]
Z.X. Shi, J.R. Li, S.Z. Liu. Influence of withdrawal rate on tensile and stress rupture properties of the single crystal superalloy DD9. Mater. Sci. For. 747/748 (2013):625-628.
DOI: 10.4028/www.scientific.net/msf.747-748.625
Google Scholar
[7]
X.G. Wang, J.R. Li, Z.X. Shi, S.Z. Liu. Effect of solid solution heat treatment on microstructures of the third generation single crystal supperally DD9. Mater. Sci. For. 747/748 (2013):549-558.
DOI: 10.4028/www.scientific.net/msf.747-748.549
Google Scholar
[8]
X.G. Wang, J.R. Li, J. Yu, S.Z. Liu, Z.X. Shi, X.D Yue. Tensile anisotropy of single crystal superalloy DD9. Acta Metall. Sinica 51 (2015): 1253-1260.
Google Scholar
[9]
W.P. Yang, J.R. Li, S.Z. Liu, Z.X. Shi, J.Q. Zhao, X.G. Wang. Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9 from 760 to 1100 °C. Trans Nonferrous Met Soc China 29 (2019):558-568.
DOI: 10.1016/s1003-6326(19)64964-2
Google Scholar
[10]
A. Heckl, S. Neumeier, M. Göken, R.F. Singer. The effect of Re and Ru on γ/γ' microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys. Mater. Sci. Eng. 528 (2011) 3435-3444.
DOI: 10.1016/j.msea.2011.01.023
Google Scholar
[11]
Z. Zhu, H. Basoalto, N. Warnken, R.C. Reed. A model for the creep deformation behaviour of nickel-based single crystal superalloys. Acta Mater. 60 (2012):4888-4900.
DOI: 10.1016/j.actamat.2012.05.023
Google Scholar
[12]
A. Ma, D. Dye, R.C. Reed. A model for the creep deformation behaviour of single-crystal superalloy CMSC-4. Acta Mater. 56 (2008):1657-1670.
DOI: 10.1016/j.actamat.2007.11.031
Google Scholar
[13]
T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada. Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction. Acta Mater. 52 (2004):3737-3744.
DOI: 10.1016/j.actamat.2004.04.028
Google Scholar
[14]
J.M Dong, J.R. Li, R.D. Mu. Fatigue behavior of thermal barrier coated DD6 single crystal superalloy at 900°C. Phy. Eng. Meta. Mater. 217 (2019):347-356.
DOI: 10.1007/978-981-13-5944-6_34
Google Scholar
[15]
J.M Dong, J.R. Li. Effect of etching on fatigue properties of DD6 single crystal superalloy. J. of Mater. Eng. and Perf. 29 (2020):3195-3204.
DOI: 10.1007/s11665-020-04865-z
Google Scholar
[16]
H.J. Xie, J.R. Li, X.D. Yue. Influence of heat treatment temperature on the microstructures and high cycle fatigue properties of DD6 single crystal superalloy. Mater. Sci. For. 898 (2017):480-486.
DOI: 10.4028/www.scientific.net/msf.898.480
Google Scholar
[17]
P. Caron. High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloys 2000, TMS, Warrendale (PA), 2000, pp.737-746.
DOI: 10.7449/2000/superalloys_2000_737_746
Google Scholar
[18]
B. Ruttert, C. Meid, L.M. Roncery, I. Lopez-Galilea, M. Bartsch, W. Theisen. Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy. Scripta Mater. 143 (2018):139-143.
DOI: 10.1016/j.scriptamat.2018.06.036
Google Scholar
[19]
P. Hallensleben, H. Schaar, P. Thome, N. Jöns, A. Jafarizadeh, I. Steinbach, G. Eggeler, J. Frenzel. On the evolution of cast microstructures during processing of single crystal Ni-base superalloys using a Bridgman seed technique. Mater. Des. 128 (2017):98-111.
DOI: 10.1016/j.matdes.2017.05.001
Google Scholar
[20]
Y.P. Xue, J.R. Li, J.Q. Zhao, J.C. Xiong. The precipitation behavior of γ' phase in single crystal Ni-based DD6 superalloy for turbine blade. Mater. Sci. For. 898 (2017):549-558.
DOI: 10.4028/www.scientific.net/msf.898.534
Google Scholar
[21]
Y.B. Zhang, L. Liu, T.W. Huang, Y.F. Li, Z.Q. Jie, J. Zhang, W.C. Yang, H.Z. Fu. Investigation on remelting solution heat treatment for nickel-based single crystal superalloys. Scripta Mater. 136 (2017):74-77.
DOI: 10.1016/j.scriptamat.2017.04.016
Google Scholar
[22]
X.W. Li, L. Wang, J.S. Dong, L.H. Lou, J. Zhang. Evolution of micro-pores in a single-crystal nickel-based superalloy during solution heat treatment. Metall. Mater. Trans. 48 (2017):2682-2685.
DOI: 10.1007/s11661-017-4057-2
Google Scholar
[23]
K.A. Unocic, D. Shin, X. Sang, E. Cakmak, and P.F. Tortorelli. Single-step aging treatment for a precipitation-strengthened Ni-based alloy and its influence on high-temperature mechanical Behavior. Scr. Mater. 162 (2019):416-420.
DOI: 10.1016/j.scriptamat.2018.11.045
Google Scholar
[24]
Fuchs GE. Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng. 300 (2001):52-60.
DOI: 10.1016/s0921-5093(00)01776-7
Google Scholar
[25]
F. Wang, D.X. Ma, J. Zhang, A. Bührig-Polaczek. Investigation of segregation and density profiles in the mushy zone of CMSX-4 superalloys solidified during downward and upward directional solidification processes. J. Alloys Comp. 620 (2015) 24-30.
DOI: 10.1016/j.jallcom.2014.09.103
Google Scholar
[26]
G. Liu, L. Liu, X.B. Zhao, B.M. Ge, J. Zhang, H.Z. Fu. Effects of Re and Ru on the solidification characteristics of nickel-base single-crystal superalloys. Metall. Mater. Trans. 42 (2011):2733-2741.
DOI: 10.1007/s11661-011-0673-4
Google Scholar