Anisotropic Tensile Properties in Ni-Based Single-Crystal Superalloy DD6 near [001] Orientation at 760°C

Article Preview

Abstract:

This work is concerned the tensile properties of the secondary Ni-based single-crystal superalloy DD6 near [001] orientation at 760°C. In this study, anisotropic tensile properties of DD6 alloy within 10° of the [001] orientation were exhibited at 760°C. The yield strength and ultimate tensile strength of DD6 alloy oriented close to [001] direction was the highest. As the deviation off the [001] orientation increased, both 0.2% yield strength and ultimate tensile strength was decreased. The specimens oriented close to [001]-[111] boundary exhibit higher yield strength and ultimate tensile strength than the specimens oriented close to [001]-[011] boundary. Numerous of dislocations can be found in the γ matrix channels during the tensile deformation. A number of dislocation pairs and few of stacking faults are found in the γ' precipitates after the tensile at 760°C. The morphology of γ' phases in DD6 alloy maintained cubical during the tensile deformation at 760°C. With Schmid's Law, the mechanism of anisotropic tensile properties in DD6 alloy near [001] orientation is analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1072)

Pages:

79-86

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloy (Ⅱ), John Wiley & Sons, Inc., New York, (1987).

Google Scholar

[2] R.C. Reed, The superalloys: fundamentals and applications, Cambridge University Press, Cambridge, (2006).

Google Scholar

[3] W. Betteridge, S.W.K. Shaw, Development of superalloys, Mater. Sci. Technol. 3(9) (1987) 682-694.

Google Scholar

[4] M. McLean, Directionally solidified materials for high temperature service, The metals society, London, (1983).

Google Scholar

[5] S. Walston, A.D. Cetel, R.A. Mackay, K.S. ƠHara, D.N. Duhl, R. Dreshfield, Joint Development of a Fourth Generation Single Crystal Superalloy, in: K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston (Eds.) Superalloys 2004, TMS, Warrendale, PA, 2004, pp.15-24.

DOI: 10.7449/2004/superalloys_2004_15_24

Google Scholar

[6] A. Sengupta, S.K. Putatunda, L. Bartosiewicz, J. Hangas, P.J. Nailos, M. Peputapeck, F.E. Alberts, Tensile behavior of a new single crystal nickel-based superalloy (CMSX-4) at room and elvated temperatures, Journal of Material Engineering and Performance 3(5) (1994) 664-672.

DOI: 10.1007/bf02645265

Google Scholar

[7] W.W. Milligan, S.D. Antolovich, Yielding and deformation behavior of the single crystal superalloy PWA 1480, Metall. Trans. A 18 (1987) 85-95.

DOI: 10.1007/bf02646225

Google Scholar

[8] P. Lu, Y. Ge, X. Jin, P. Li, X. Ji, D. Zhao, Z. Wang, X. Fan, A dislocation density-based model for the temperature dependent anomalous behaviors of nickel-based single-crystal superalloy, Mechanics of Materials 170 (2022) 104326.

DOI: 10.1016/j.mechmat.2022.104326

Google Scholar

[9] L.N. Wang, Y. Liu, J.J. Yu, Y. Xu, X.F. Sun, H.R. Guan, Z.Q. Hu, Orientation and temperature dependence of yielding and deformation behavior of a nickel-base single crystal superalloy, Mater. Sci. Eng. A 505 (2009) 144-150.

DOI: 10.1016/j.msea.2008.12.039

Google Scholar

[10] R.A. MacKay, R.L. Dreshfield, R.D. Meier, Anisotropy of Nickel-base superalloy single crystals, in: J.K. Tien, W.B. Kent (Eds.) Superalloys 1980, ASM, Warrendale, PA, 1980, pp.385-394.

DOI: 10.7449/1980/superalloys_1980_385_394

Google Scholar

[11] J.R. Li, Z.G. Zhong, D.Z. Tang, S.Z. Liu, P. Wei, P.Y. Wei, Z.T. Wu, D. Huang, M. Han, A low-cost second geneution single crystal superalloy DD6, in: T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schina (Eds.) Superalloys 2000, The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2000, pp.777-783.

DOI: 10.7449/2000/superalloys_2000_777_783

Google Scholar

[12] J.R. Li, J.Q. Zhao, S.Z. Liu, M. Han, Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6, in: R.C. Reed, K.A. Green, P. Caron, T.P. Grab, M.G. Fahrmann, E.S. Huron, S.A. Woodard (Eds.) Superalloys 2008, The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2008, pp.443-451.

DOI: 10.7449/2008/superalloys_2008_443_451

Google Scholar

[13] Z.X. Shi, S.Z. Liu, J. Yu, M. Han, J.R. Li, microstructure evolution of a single crystal superalloy after tensile fracture at different temperature, Advanced Materials Research 721 (2013) 262-265.

DOI: 10.4028/www.scientific.net/amr.721.262

Google Scholar

[14] K. Kakehi, Effect of plastic anisotropy on tensile strength of single crystals of an ni-based superalloy, Scripta Matallurgica 42 (2000) 197-202.

DOI: 10.1016/s1359-6462(99)00313-9

Google Scholar

[15] M. Feller-Kniepmeier, T. Link, Dislocation structures in γ-γ' interfaces of the single-crystal superalloy SRR 99 after annealing and high temperature creep, Mater. Sci. Eng. A 113 (1989) 191-195.

DOI: 10.1016/0921-5093(89)90306-7

Google Scholar

[16] J. Yu, J.R. Li, J.Q. Zhao, M. Han, Z.X. Shi, S.Z. Liu, H.L. Yuan, Orientation dependence of creep properties and deformation mechanism in DD6 single crystal superalloy at 760℃ and 785MPa, Mater. Sci. Eng. A 560 (2013) 47-53.

DOI: 10.1016/j.msea.2012.08.135

Google Scholar

[17] W.W. Milligan, S.D. Antolovich, The Mechanism and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480, Metall. Trans. A 22 (1991) 2309-2318.

DOI: 10.1007/bf02664997

Google Scholar

[18] W.W. Milligan, S.D. Antolovich, The correlation between the temperature dependence of the CRSS and the formation of superlattice-intrinsic stacking faults in the nickel-base superalloy PWA 1480, Metall. Trans. A 20 (1989) 1888-1889.

DOI: 10.1007/bf02663221

Google Scholar