[1]
J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611-2622.
DOI: 10.1016/s1359-6454(03)00059-4
Google Scholar
[2]
V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, ASM Trans. Quart. 60 (1967) 252-259.
Google Scholar
[3]
R. Feng, M.H. Zhang, N.L. Chen, X.W. Zuo, Y.H. Rong, Acta Metall. Sin. 50 (2014)498-506.
Google Scholar
[4]
D. Webster, ASM Trans. Quart. 61 (1968) 816-828.
Google Scholar
[5]
Mei Xu, Hui Li, Rui-ting Jiang, et al. Deformation behavior and microstructural evolution in ultra-high-strength dual-phase (UHS-DP1000) steel with different strain rates. 2019 26(2) 173-18.
DOI: 10.1007/s42243-018-0213-1
Google Scholar
[6]
S. Oliver, T.B. Jones, G. Fourlaris, Mater. Sci. Technol. 23 (2007) 423–431.
Google Scholar
[7]
Moor E D , Speer J G , Matlock D K , et al. Effect of Carbon and Manganese on the Quenching and Partitioning Response of CMnSi Steels[J]. Isij International, 2011 51(1) 137-144.
DOI: 10.2355/isijinternational.51.137
Google Scholar
[8]
M. Calcagnotto, D. Ponge, D. Raabe, On the effffect of manganese on grain size stability and hardenability in ultrafifine-grained ferrite/martensite dual-phase steels, Metall. Mater. Trans. A 43 (2012) 37–46.
DOI: 10.1007/s11661-011-0828-3
Google Scholar
[9]
J. Hidalgo, K.O. Findley, M.J. Santofifimia, Thermal and mechanical stability of retained austenite surrounded by martensite with difffferent degrees of tempering, Mater. Sci. Eng. A 690 (2017) 337–347.
DOI: 10.1016/j.msea.2017.03.017
Google Scholar
[10]
Pichler, S. Traint, T. Hebesberger, P. Stiaszny, E.A. Werner, Processing of thin sheet multiphase steel grades, Steel Res. Int. 78 (2007) 216–223.
DOI: 10.1002/srin.200705883
Google Scholar
[11]
Grajcar, M. Kamińska, M. Opiela, P. Skrzypczyk, B. Grzegorczyk, E. KalinowskaOzgowicz, Segregation of alloying elements in thermomechanically rolled mediumMn multiphase steels, J. Achiev. Mater. Manuf. Eng. 55 (2012) 256–264.
Google Scholar
[12]
J. Maki, J. Mahieu, B.C.D. Cooman, S. Claessens, Galvanisability of silicon free CMnAl Tsteels, Mater. Sci. Technol. 19 (2003) 125–131.
DOI: 10.1179/026708303225009300
Google Scholar
[13]
J. Kliber, I. Schindler, Recrystallization/precipitation behaviour in microalloyed steels, J. Mater. Process. Technol. 60 (1996) 597–602.
DOI: 10.1016/0924-0136(96)02392-8
Google Scholar
[14]
S.F. Medina, Determination of precipitation–time–temperature (PTT) diagrams for Nb, Ti or V micro-alloyed steels, J. Mater. Sci. (1997) 1487–1492.
Google Scholar
[15]
Q.L. Yong: Microalloyed Steels-Physical and Mechanical Metallurgy, Metall. Industry Press, Beijing, (1989).
Google Scholar
[16]
Q.L. Yong: Secondary Phases in Steels, Metallurgical Industry Press, Beijing, (2006).
Google Scholar
[17]
Bhadeshia H , Edmonds D V . The bainite transformation in a silicon steel[J]. Metallurgical Transactions A, 1979, 10(7):895-907.
DOI: 10.1007/bf02658309
Google Scholar
[18]
J. Tobata, K.-L. Ngo-Huynh, N. Nakada, T. Tsuchiyama, S. Takaki, Role of silicon in quenching and partitioning treatment of low-carbon martensitic stainless steel, ISIJInt. 52 (2012) 1377–1382.
DOI: 10.2355/isijinternational.52.1377
Google Scholar
[19]
G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings 7th International Symp. Ballist., The Hague, The Netherlands, 1983, p.541–547.
Google Scholar
[20]
Zou D Q , Li S H , Ji H . Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels[J]. Materials Science & Engineering A, 2016, 680(JAN.5):54-63.
DOI: 10.1016/j.msea.2016.10.083
Google Scholar
[21]
Ying Wang, Ke Zhang, Zhenghong Guo, et al. A new effect of retained austenite on ductility enhancement in high strength bainitic steel. 2012 552 288-294.
DOI: 10.1016/j.msea.2012.05.042
Google Scholar
[22]
Tobata J , Ngo-Huynh K L , Nakada N , et al. Role of Silicon in Quenching and Partitioning Treatment of Low-carbon Martensitic Stainless Steel[J]. Transactions of the Iron & Steel Institute of Japan, 2012 52(7) 1377-1382.
DOI: 10.2355/isijinternational.52.1377
Google Scholar
[23]
Tirumalasetty G K , Huis M V , Kwakernaak C , et al. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel[J]. Acta Materialia, 2012 60( 3) 1311-1321.
DOI: 10.1016/j.actamat.2011.11.026
Google Scholar
[24]
W, S, Gao, et al. In-situ study of the deformation-induced rotation and transformation of retained austenite in a low-carbon steel treated by the quenching and partitioning process[J]. Materials Science & Engineering: A, 2016 649 417-425.
DOI: 10.1016/j.msea.2015.09.076
Google Scholar
[25]
J.V. Slycken, P. Verleysen, J. Degrieck, L. Samek, B.C. De Cooman, Metall. Mater. Trans. A 37 (2006) 1527-1539.
DOI: 10.1007/s11661-006-0097-8
Google Scholar
[26]
T.K. Shan, S.H. Li, W.G. Zhang, Z.G. Xu, Mater. Des. 29 (2008) 1810–1816.
Google Scholar
[27]
Jacques P J , Delannay F , J Ladrière. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels[J]. Metallurgical & Materials Transactions A, 2001 32(11) 2759-2768.
DOI: 10.1007/s11661-001-1027-4
Google Scholar
[28]
Xiong X C , Chen B , Huang M X , et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia, 2013 68(5) 321-324.
DOI: 10.1016/j.scriptamat.2012.11.003
Google Scholar
[29]
J.V. Slycken, P. Verleysen, J. Degrieck, L. Samek, B.C. De Cooman, Metall. Mater. Trans. A 37 (2006) 1527-1539.
DOI: 10.1007/s11661-006-0097-8
Google Scholar
[30]
S. Curtze, V.-T. Kuokkala, M. Hokka, P. Peura, Mater. Sci. Eng. A 507 (2009) 124-131.
Google Scholar
[31]
G.B. Olson, M. Cohen, J. Less Common Metals 28 (1972) 107-118.
Google Scholar
[32]
He S.H., He B.B., Zhu K.Y., et al. Revealing the role of dislocations on the stability of retained austenite in a tempered bainite. 2019 168 23-27.
DOI: 10.1016/j.scriptamat.2019.04.019
Google Scholar