Effect of Bainite/Martensite/Retained Austenite Triplex Microstructure on the High Strain Rate Behavior of a One Step Quenching and Partitioning Steel

Article Preview

Abstract:

The mechanical properties and microstructure evolution of a one step quenching and partitioning steel containing bainite/martensite/retained austenite mixed microstructure was studied though static and dynamic tensile tests (strain rates ranging from10-3 s-1 to 5×102 s-1 ).Scanning electron microscopy (SEM) and electron-back-scattered diffraction (EBSD) were applied to describe the microstructure evolution near the fracture. XRD characterization shows the volume fraction of retained austenite decrease exponentially with the strain rates increased.EBSD phase maps reveal that the first type of retained austenite is less sensitive to strain rate than the second type.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1072)

Pages:

45-54

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611-2622.

DOI: 10.1016/s1359-6454(03)00059-4

Google Scholar

[2] V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, ASM Trans. Quart. 60 (1967) 252-259.

Google Scholar

[3] R. Feng, M.H. Zhang, N.L. Chen, X.W. Zuo, Y.H. Rong, Acta Metall. Sin. 50 (2014)498-506.

Google Scholar

[4] D. Webster, ASM Trans. Quart. 61 (1968) 816-828.

Google Scholar

[5] Mei Xu, Hui Li, Rui-ting Jiang, et al. Deformation behavior and microstructural evolution in ultra-high-strength dual-phase (UHS-DP1000) steel with different strain rates. 2019 26(2) 173-18.

DOI: 10.1007/s42243-018-0213-1

Google Scholar

[6] S. Oliver, T.B. Jones, G. Fourlaris, Mater. Sci. Technol. 23 (2007) 423–431.

Google Scholar

[7] Moor E D , Speer J G , Matlock D K , et al. Effect of Carbon and Manganese on the Quenching and Partitioning Response of CMnSi Steels[J]. Isij International, 2011 51(1) 137-144.

DOI: 10.2355/isijinternational.51.137

Google Scholar

[8] M. Calcagnotto, D. Ponge, D. Raabe, On the effffect of manganese on grain size stability and hardenability in ultrafifine-grained ferrite/martensite dual-phase steels, Metall. Mater. Trans. A 43 (2012) 37–46.

DOI: 10.1007/s11661-011-0828-3

Google Scholar

[9] J. Hidalgo, K.O. Findley, M.J. Santofifimia, Thermal and mechanical stability of retained austenite surrounded by martensite with difffferent degrees of tempering, Mater. Sci. Eng. A 690 (2017) 337–347.

DOI: 10.1016/j.msea.2017.03.017

Google Scholar

[10] Pichler, S. Traint, T. Hebesberger, P. Stiaszny, E.A. Werner, Processing of thin sheet multiphase steel grades, Steel Res. Int. 78 (2007) 216–223.

DOI: 10.1002/srin.200705883

Google Scholar

[11] Grajcar, M. Kamińska, M. Opiela, P. Skrzypczyk, B. Grzegorczyk, E. KalinowskaOzgowicz, Segregation of alloying elements in thermomechanically rolled mediumMn multiphase steels, J. Achiev. Mater. Manuf. Eng. 55 (2012) 256–264.

Google Scholar

[12] J. Maki, J. Mahieu, B.C.D. Cooman, S. Claessens, Galvanisability of silicon free CMnAl Tsteels, Mater. Sci. Technol. 19 (2003) 125–131.

DOI: 10.1179/026708303225009300

Google Scholar

[13] J. Kliber, I. Schindler, Recrystallization/precipitation behaviour in microalloyed steels, J. Mater. Process. Technol. 60 (1996) 597–602.

DOI: 10.1016/0924-0136(96)02392-8

Google Scholar

[14] S.F. Medina, Determination of precipitation–time–temperature (PTT) diagrams for Nb, Ti or V micro-alloyed steels, J. Mater. Sci. (1997) 1487–1492.

Google Scholar

[15] Q.L. Yong: Microalloyed Steels-Physical and Mechanical Metallurgy, Metall. Industry Press, Beijing, (1989).

Google Scholar

[16] Q.L. Yong: Secondary Phases in Steels, Metallurgical Industry Press, Beijing, (2006).

Google Scholar

[17] Bhadeshia H , Edmonds D V . The bainite transformation in a silicon steel[J]. Metallurgical Transactions A, 1979, 10(7):895-907.

DOI: 10.1007/bf02658309

Google Scholar

[18] J. Tobata, K.-L. Ngo-Huynh, N. Nakada, T. Tsuchiyama, S. Takaki, Role of silicon in quenching and partitioning treatment of low-carbon martensitic stainless steel, ISIJInt. 52 (2012) 1377–1382.

DOI: 10.2355/isijinternational.52.1377

Google Scholar

[19] G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings 7th International Symp. Ballist., The Hague, The Netherlands, 1983, p.541–547.

Google Scholar

[20] Zou D Q , Li S H , Ji H . Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels[J]. Materials Science & Engineering A, 2016, 680(JAN.5):54-63.

DOI: 10.1016/j.msea.2016.10.083

Google Scholar

[21] Ying Wang, Ke Zhang, Zhenghong Guo, et al. A new effect of retained austenite on ductility enhancement in high strength bainitic steel. 2012 552 288-294.

DOI: 10.1016/j.msea.2012.05.042

Google Scholar

[22] Tobata J , Ngo-Huynh K L , Nakada N , et al. Role of Silicon in Quenching and Partitioning Treatment of Low-carbon Martensitic Stainless Steel[J]. Transactions of the Iron & Steel Institute of Japan, 2012 52(7) 1377-1382.

DOI: 10.2355/isijinternational.52.1377

Google Scholar

[23] Tirumalasetty G K , Huis M V , Kwakernaak C , et al. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel[J]. Acta Materialia, 2012 60( 3) 1311-1321.

DOI: 10.1016/j.actamat.2011.11.026

Google Scholar

[24] W, S, Gao, et al. In-situ study of the deformation-induced rotation and transformation of retained austenite in a low-carbon steel treated by the quenching and partitioning process[J]. Materials Science & Engineering: A, 2016 649 417-425.

DOI: 10.1016/j.msea.2015.09.076

Google Scholar

[25] J.V. Slycken, P. Verleysen, J. Degrieck, L. Samek, B.C. De Cooman, Metall. Mater. Trans. A 37 (2006) 1527-1539.

DOI: 10.1007/s11661-006-0097-8

Google Scholar

[26] T.K. Shan, S.H. Li, W.G. Zhang, Z.G. Xu, Mater. Des. 29 (2008) 1810–1816.

Google Scholar

[27] Jacques P J , Delannay F , J Ladrière. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels[J]. Metallurgical & Materials Transactions A, 2001 32(11) 2759-2768.

DOI: 10.1007/s11661-001-1027-4

Google Scholar

[28] Xiong X C , Chen B , Huang M X , et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia, 2013 68(5) 321-324.

DOI: 10.1016/j.scriptamat.2012.11.003

Google Scholar

[29] J.V. Slycken, P. Verleysen, J. Degrieck, L. Samek, B.C. De Cooman, Metall. Mater. Trans. A 37 (2006) 1527-1539.

DOI: 10.1007/s11661-006-0097-8

Google Scholar

[30] S. Curtze, V.-T. Kuokkala, M. Hokka, P. Peura, Mater. Sci. Eng. A 507 (2009) 124-131.

Google Scholar

[31] G.B. Olson, M. Cohen, J. Less Common Metals 28 (1972) 107-118.

Google Scholar

[32] He S.H., He B.B., Zhu K.Y., et al. Revealing the role of dislocations on the stability of retained austenite in a tempered bainite. 2019 168 23-27.

DOI: 10.1016/j.scriptamat.2019.04.019

Google Scholar