Transverse Stress Rupture Properties of a Nickel-Base Superalloy Bicrystal

Article Preview

Abstract:

Effects of low angle boundaries (LABs) on the stress rupture properties of bicrystals of a nickel-based third generation single crystal superalloy at 1093 °C/158 MPa were investigated. The results show that the effect of LABs on the stress rupture elongation of the alloy is higher than that of the stress rupture life at 1093 °C/158 MPa. As the misorientation angle of the LABs reaches 9.0°, the stress rupture life of the alloy with LABs can still retain nearly 50% of that with LABs of 0° at 1093 °C/158 MPa; while the stress rupture elongation of the alloy with LABs drops obviously when the misorientation angle of the LABs is larger than 6.5°. The fracture surfaces of stress ruptured alloy with LABs of 0°~2.9° are characterized by dimple features, while those with LABs of 6.5°~12.3° all exhibit intergranular fracture features. Apparent dimple features can be observed at the intergranular fracture surface of the alloy with LABs of 6.5° and the elongation of it is high. However, obvious dendrite features can be observed at the intergranular fracture surfaces of the alloy with LABs of 7.6°~12.3° and the elongations of them are relatively low.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1072)

Pages:

87-93

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[2] F.R.N. Nabarro, Mat. Sci. Eng. A 184 (1994) 167-171.

Google Scholar

[3] J.R. Li, Z.G. Zhong, D.Z. Tang, S.Z. Liu, P. Wei, P.Y. Wei, Z.T. Wu, D. Huang, M. Han, Proc Superalloy 2000 (ed. by T.M. Pollock, R.D. Kissinger, R.R. Bowman, et al.), TMS, Warrendale, PA (2000) 777-783.

Google Scholar

[4] J.R. Li, S.Z. Liu, X.G. Wang, Z.X. Shi, J.Q. Zhao, Proc Superalloy 2016 (ed. by M. Hardy, E. Huron, U. Glatzel, et al.), TMS, Warrendale, PA (2016) 57-63.

Google Scholar

[5] D.M. Shah, A. Cetel, Proc Superalloy 2000 (ed. by T.M. Pollock, R.D. Kissinger, R.R. Bowman, et al.), TMS, Warrendale, PA (2000) 295-304.

Google Scholar

[6] J.Q. Zhao, J.R. Li, S.Z. Liu, H.L. Yuan, J. Mat. Eng. 8 (2008) 73-76.

Google Scholar

[7] J.R. Li, J.Q. Zhao, S.Z. Liu, M. Han, Proc Superalloy 2008 (ed. by R.C. Reed, K.A. Green, P. Caron, et al.), TMS, Warrendale, PA (2008) 443-451.

Google Scholar

[8] W. Bogdanowicz, R. Albrecht, J. Sieniawski, K. Kubiak, J. Cryst. Growth 401 (2014) 418-422.

Google Scholar

[9] J.C. Stinville, K. Gallup, T.M. Pollock, Metall. Mater. Trans A 46 (2015) 2516-2529.

Google Scholar

[10] R. Paszkowski, W. Bogdanowicz, D. Szeliga, Materials 14 (2021) 1-13.

Google Scholar

[11] J.Y. He, F. Scholz, O.M. Horst, P. Thome, J. Frenzel, G. Eggeler, B. Gault, Scripta Mater. 185 (2020) 88-93.

DOI: 10.1016/j.scriptamat.2020.03.063

Google Scholar

[2] Y. Patel, P.F. Browning, M.D. Fitzpatrick, D. Schmiedechnekt, A. Price, T. Simpson, G. Erickson, K. Harris, International Gas Turbine & Aeroengine Congress & Exhibition, Munich, Germany, (2000) 1-7.

Google Scholar

[3] J.Q. Zhao, J.R. Li, S.Z. Liu, H.L. Yuan, M. Han, J. Aeron. Mater. 27 (2007) 6-10.

Google Scholar

[4] Z.X. Shi, J.R. Li, S.Z. Liu, J.Q. Zhao, Rare Metal. Mat. Eng. 41 (2012) 962-966.

Google Scholar

[5] L. Cao, Z.Y. Zhou, T. Jin, X.F. Sun, Acta Metall. Sin. 50 (2014) 11-18.

Google Scholar

[6] J.C. Qin, R.J. Cui, Z.H. Huang, J.Q. Zhao, Y.P. Zhang, C. Zong, S.P. Chen, J. Aeron. Mater. 37 (2017) 24-29.

Google Scholar

[17] Y.S. Zhao, J. Zhang, Y.S. Luo, B. Zhang, G. Sha, L.F. Li, D.Z. Tang, Q. Feng, Acta Mater. 176 (2019) 109-122.

Google Scholar

[8] Z.X. Shi, S.Z. Liu, M. Han, J.R. Li, Mater Sci. Forum 849 (2016) 468-474.

Google Scholar

[9] A.A. Hopgood, J.W. Martin, Mat. Sci. Eng. 82 (1986) 27-36.

Google Scholar

[20] D.W. Maclachlan, D.M. Knowles, Mat. Sci. Eng. A 302 (2001) 275-285.

Google Scholar