Hot Corrosion Behavior of a New Powder Metallurgy Superalloy in Molten Na2SO4-NaСl Salts

Article Preview

Abstract:

Hot corrosion behavior of a powder metallurgy superalloy (Alloy 1) in molten 95% Na2SO4+5%NaCl salts at 700 °C, 750 °C and 800 °C are investigated with average corrosion rate calculation, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy spectrum analyzer (EDS). Experimental results show that the average corrosion rate of Alloy 1 increases as the temperature elevates. The corrosion layers obtained after 100h of hot corrosion were mainly composed of Cr2O3, TiO2, Al2O3 , NiO and Ni3S2 at each temperature, meanwhile NiCr2O4 and Cr2S3 appeared at 750 °C and 800 °C respectively. The cross-sectional morphologies and corresponding elemental maps indicate that lots of Ni-Ni3S2 eutectic appeared in corrosion layers and a large amount of sulfides and oxides appeared in internal substrate. According to these results, the combined mechanism of oxidation and sulfuration in Na2SO4-NaCl salts for Alloy 1 is confirmed. Compared to Alloy 2, the increased Co and Al content in Alloy 1 with better hot corrosion resistance at 800 °C promoted the rapid formation of continuous Cr2O3 and Al2O3 protective films on the alloy surface in which Co inhibited internal oxidation of Al and reduced internal diffusion of S through the third element effect.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1072)

Pages:

57-65

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] HE Jia-hua, GUO xi-ping, QIAO Yan-qiang. Oxidation and hot corrosion behaviors of Nb-Si based ultrahigh temperature alloys at 900℃ [J]. Transactions of Nonferrous Metals Society of China, 2021, 31: 207-210.

DOI: 10.1016/s1003-6326(20)65488-7

Google Scholar

[2] MENG Jun-sheng, CHEN Ming-xuan, SHI Xiao-ping, et al. Transactions of Nonferrous Metals Society of China [J]. 2021,31: 2402-2414.

Google Scholar

[3] YANG L, HAWK J A, DUQUETTE D J, et al. Effect of microstructure and environment on static crack growth resistance in alloy 706 [J]. J Mater Eng Perform 2009;18:361-368.

DOI: 10.1007/s11665-008-9297-2

Google Scholar

[4] BAI C Y, LUO Y J, KOO C H. Improvement of high temperature oxidation and corrosion resistance of superalloy IN-738LC by pack cementation [J]. Surf Coat Technol 2004, 183:74-88.

DOI: 10.1016/j.surfcoat.2003.10.011

Google Scholar

[5] CHO S H, HUR J M, SEO C S, et al. Hot corrosion behavior of Ni-base alloys in a molten salt under an oxidizing atmosphere [J]. J Alloys Compd 2009, 468:263-269.

DOI: 10.1016/j.jallcom.2007.12.094

Google Scholar

[6] WANG C J, LIN J S. The oxidation of MAR-M247 superalloy with Na2SO4 coating [J]. Mater Chem Phys 2002, 76:123-129.

DOI: 10.1016/s0254-0584(01)00527-2

Google Scholar

[7] LIU G M, YU F, TIAN J H, et al. Influence of pre-oxidation on the hot corrosion of M38G superalloy in the mixture of Na2SO4-NaCl melts [J]. Mater Sci Eng A 2008, 496:40-44.

DOI: 10.1016/j.msea.2008.04.046

Google Scholar

[8] HOU J S, GUO J T, ZHOU L Z, et al. Microstructure and mechanical properties of cast Ni-base superalloy K44 [J]. Mater Sci Eng A 2004, 374:327-334.

DOI: 10.1016/j.msea.2004.03.005

Google Scholar

[9] HOU J S, GUO J T, Yang G X, et al. The microstructural nstability of a hot corrosion resistant superalloy during long-term exposure [J]. Mater Sci Eng A 2008, 498:349-358.

DOI: 10.1016/j.msea.2008.08.005

Google Scholar

[10] Zheng L, Xu TD, Deng Q. Experimental study on the characteristic of grain-boundary segregation of phosphorus in Ni-base superalloy. Mater Lett 2008, 62:54-6.

DOI: 10.1016/j.matlet.2007.04.082

Google Scholar

[11] Zeng C L, Lia J. Electrochemical impedance studies of molten (0.9Na, 0.1K)2SO4-induced hot corrosion of the Ni-based superalloy M38G at 900℃ in air.Electrochim Acta 2005, 50:5533-5538.

DOI: 10.1016/j.electacta.2005.03.034

Google Scholar

[12] Deb D, Ramakrishna Iyer S, Radhakrishnan VM. A comparative study of oxidation and hot corrosion of a cast nickel base superalloy in different corrosive environments. Mater Lett 1996, 29:19-23.

DOI: 10.1016/s0167-577x(96)00109-7

Google Scholar

[13] Sidhu T S, Prakash S, Agrawal RD. Evaluation of hot corrosion resistance of HVOF coatings on a Ni-based superalloy in molten salt environment. Mater Sci Eng A 2006, 430:64-78.

DOI: 10.1016/j.msea.2006.05.099

Google Scholar

[14] Zhao S Q, Xie X S, Smith GD. Research and improvement on structure stability and corrosion resistance of nickel-base superalloy INCONEL alloy 740. Mater Des 2006;27:1120-1127.

DOI: 10.1016/j.matdes.2005.03.015

Google Scholar

[15] Gonzalez-Rodriguez J G, Haro S, Martinez-Villafane A. Porcayo-Calderon J. Corrosion performance of heat resistant alloys in Na2SO4-V2O5 molten salts. Mater Sci Eng A 2006, 435: 258-265.

DOI: 10.1016/j.msea.2006.06.138

Google Scholar

[16] Liu L, Li Y, Wang F H. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl. Electrochim Acta 2007, 52:7193-7202.

DOI: 10.1016/j.electacta.2007.05.043

Google Scholar

[17] ZHENG Lei, ZHANG Mei-chang, DONG Jian-xin. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000℃ [J]. Appl Surf Sci 2010, 256:7510-7515.

DOI: 10.1016/j.apsusc.2010.05.098

Google Scholar

[18] LIU F J, ZHANG M C, DONG J X. High-temperature oxidation of FGH96 P/M superalloy [J]. Acta Metall Sin 2007, 20:102-10.

Google Scholar

[19] ROBINO C V. Representation of mixed reactive gases on free energy (Ellingham–Richardson) diagrams [J]. Metall Mater Trans B 1996, 27:65-69.

DOI: 10.1007/bf02915078

Google Scholar

[20] KRUPP U, CHRIST H J. Selective oxidation and internal nitridation during high-temperature exposure of single-crystalline nickel-base superalloys [J]. Metall Mater Trans A 2000, 31:47-56.

DOI: 10.1007/s11661-000-0051-0

Google Scholar

[21] ZHEN Zhen, WANG Xin, SHEN Zao-yu, et al. Thermal cycling behavior of EB-PVD rare earth oxides co-doping ZrO2-based thermal barrier coatings [J]. Ceram Int, 2021, 47: 23101-23109.

DOI: 10.1016/j.ceramint.2021.05.023

Google Scholar

[22] YUAN L, WANG H M. Hot corrosion behaviors of a Cr13Ni5Si2-based metal silicide alloy in Na2SO4 + 25 wt.% K2SO4 and Na2SO4 + 25 wt.% NaCl molten salts [J]. Intermetallics 2010, 18: 324-329.

DOI: 10.1016/j.intermet.2009.08.004

Google Scholar

[23] YANG X, PENG X, WANG F. Hot corrosion of a novel electrodeposited Ni-6Cr-7Al nanocomposite under molten (0.9Na, 0.1K)2SO4 at 900℃[J]. Scripta Mater 2007, 56:891-894.

DOI: 10.1016/j.scriptamat.2007.01.035

Google Scholar