The Influence of Matrix Density on The Weibull Modulus of Natural Fiber Reinforced Nanocomposites

Article Preview

Abstract:

In recent decades, polymer composites have gained significant interests within the research community due to its high strength-to-weight ratio. Its properties, such as low cost, lightweight, corrosion resistance, and impact resistance, make it desirable for both household and industrial applications. However, the reliability of the composite model with density influence is still challenging. In this study, experiments were carried out using epoxy systems of varying densities to fabricate oil palm empty fruit bunch (OPEFB) carbon nanoparticle composites to investigate the influence of matrix density on its Weibull modulus. It is found that the increase in matrix density increases the nanocomposite reliability. A Weibull modulus of 9.5, 82.2 and 183.4 were obtained for low, medium and high matrix density nanocomposites, respectively. Such findings would facilitate the development of particle-reinforced composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1074)

Pages:

3-9

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Y. Khalid, Z. U. Arif, W. Ahmed, and H. Arshad, Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials,, Sustainable Materials and Technologies, vol. 31, pp. e00382, (2022).

DOI: 10.1016/j.susmat.2021.e00382

Google Scholar

[2] M. R. Sanjay, G. R. Arpitha, and B. Yogesha, Study on Mechanical Properties of Natural - Glass Fibre Reinforced Polymer Hybrid Composites: A Review,, Materials Today: Proceedings, vol. 2, no. 4, pp.2959-2967, (2015).

DOI: 10.1016/j.matpr.2015.07.264

Google Scholar

[3] J. Holbery, and D. Houston, Natural-fiber-reinforced polymer composites in automotive applications,, JOM, vol. 58, no. 11, pp.80-86, (2006).

DOI: 10.1007/s11837-006-0234-2

Google Scholar

[4] T. Ghosh, H. C. Kim, R. De Kleine, T. J. Wallington, and B. R. Bakshi, Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: Front subframe case study,, Sustainable Materials and Technologies, vol. 28, pp. e00263, (2021).

DOI: 10.1016/j.susmat.2021.e00263

Google Scholar

[5] E. Amasawa, M. Hasegawa, N. Yokokawa, H. Sugiyama, and M. Hirao, Environmental performance of an electric vehicle composed of 47% polymers and polymer composites,, Sustainable Materials and Technologies, vol. 25, pp. e00189, (2020).

DOI: 10.1016/j.susmat.2020.e00189

Google Scholar

[6] A. Ganguly, S. Shankar, A. Das, M. Shukla, C. Swaroop, and T. Bhardwaj, Natural fibre reinforced composites: A review based on additive manufacturing routes and biodegradability perspective,, Materials Today: Proceedings, (2022).

DOI: 10.1016/j.matpr.2022.02.607

Google Scholar

[7] R. K. Malviya, R. K. Singh, R. Purohit, and R. Sinha, Natural fibre reinforced composite materials: Environmentally better life cycle assessment – A case study,, Materials Today: Proceedings, vol. 26, pp.3157-3160, (2020).

DOI: 10.1016/j.matpr.2020.02.651

Google Scholar

[8] T. K. Khieng, S. Debnath, E. Ting Chaw Liang, M. Anwar, A. Pramanik, and A. K. Basak, A Review on Mechanical Properties of Natural Fibre Reinforced Polymer Composites under Various Strain Rates,, Journal of Composites Science, vol. 5, no. 5, p.130, (2021).

DOI: 10.3390/jcs5050130

Google Scholar

[9] A. Karimah, R. Ridho, S. Munawar, S. Adi, Ismadi, R. Damayanti, B. Subiyanto, W. Fatriasari, and A. Fudholi, A review on natural fibers for development of eco-friendly bio-composite,, Journal of Materials Research and Technology, vol. 13, pp.2442-2458, (2021).

DOI: 10.1016/j.jmrt.2021.06.014

Google Scholar

[10] D. Wong, M. Anwar, S. Debnath, A. Hamid, S. Izman, A. K. Basak, and A. Pramani, Tensile Strength and Morphological Behavior of Treated Oil Pam Empty Fruit Bunch Particle Reinforced Polymeric Composite,, Materials Science Forum, vol. 1064, pp.27-37, (2022).

DOI: 10.4028/p-e12r4q

Google Scholar

[11] S. A. Adnan, A. N. Ranjamdin, A. F. Osman, I. Ibrahim, L. D. Sheng, N. H. A. Zaidi, and M. H. Leman, Mechanical properties of thermoplastic starch/oil palm empty fruit bunch biocomposite film,, in Proceedings of Green Design and Manufacture 2020, (2021).

DOI: 10.1063/5.0044668

Google Scholar

[12] N. A. Ramlee, M. Jawaid, E. S. Zainudin, and S. A. K. Yamani, Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites,, Journal of Materials Research and Technology, vol. 8, no. 4, pp.3466-3474, (2019).

DOI: 10.1016/j.jmrt.2019.06.016

Google Scholar

[13] T. S. Cheng, D. N. Uy Lan, S. Phillips, and L. Q. N. Tran, Characteristics of oil palm empty fruit bunch fiber and mechanical properties of its unidirectional composites,, Polymer Composites, vol. 40, no. 3, pp.1158-1164, (2019).

DOI: 10.1002/pc.24824

Google Scholar

[14] S. Mahalingam, V. Gopalan, H. Velivela, V. Pragasam, Prashanth, and V. Suthenthiraveerappa, Studies on Shear Strength of CNT/Coir Fibre/Fly Ash Reinforced Epoxy Polymer Composites,, Emerging Materials Research, vol. 9, no. 1, pp.1-14, (2020).

DOI: 10.1680/jemmr.19.00098

Google Scholar

[15] L. Zeng, X. Huang, X. Li, R. Li, Y. Li, and Y. Xiong, A gelatin-treated carbon nanofiber/epoxy nanocomposite with significantly improved multifunctional properties,, Materials Today Communications, vol. 24, p.101006, (2020).

DOI: 10.1016/j.mtcomm.2020.101006

Google Scholar

[16] A. A. Tarhini, and A. R. Tehrani-Bagha, Graphene-based polymer composite films with enhanced mechanical properties and ultra-high in-plane thermal conductivity,, Composites Science and Technology, vol. 184, p.107797, (2019).

DOI: 10.1016/j.compscitech.2019.107797

Google Scholar

[17] L. Amoroso, E. L. Heeley, S. N. Ramadas, and T. McNally, Crystallization behaviour of composites of HDPE and MWCNTs: The effect of nanotube dispersion, orientation and polymer deformation,, Polymer, vol. 201, p.122587, (2020).

DOI: 10.1016/j.polymer.2020.122587

Google Scholar

[18] S. Pimenta, Fibre failure modelling,, Numerical Modelling of Failure in Advanced Composite Materials, P. P. Camanho and S. R. Hallett, eds., pp.193-224: Woodhead Publishing, (2015).

DOI: 10.1016/b978-0-08-100332-9.00008-6

Google Scholar

[19] P. Jiang, Y. Xing, X. Jia, and B. Guo, Weibull Failure Probability Estimation Based on Zero-Failure Data,, Mathematical Problems in Engineering, vol. 2015, pp.1-8, (2015).

DOI: 10.1155/2015/681232

Google Scholar

[20] U. A. Khashaba, Fatigue and reliability analysis of unidirectional GFRP composites under rotating bending loads,, Journal of Composite Materials, vol. 37, no. 4, pp.317-331, (2003).

DOI: 10.1177/0021998303037004680

Google Scholar

[21] D.-L. Nguyen, D.-K. Thai, T.-T. Ngo, T.-K. Tran, and T.-T. Nguyen, Weibull modulus from size effect of high-performance fiber-reinforced concrete under compression and flexure,, Construction and Building Materials, vol. 226, pp.743-758, (2019).

DOI: 10.1016/j.conbuildmat.2019.07.234

Google Scholar

[22] Q. Fu, Bioactive Glass Scaffolds for Bone Tissue Engineering,, Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses, G. Kaur, ed., pp.417-442: Woodhead Publishing, (2019).

DOI: 10.1016/b978-0-08-102196-5.00015-x

Google Scholar

[23] J. B. Quinn, and G. D. Quinn, A practical and systematic review of Weibull statistics for reporting strengths of dental materials,, Dental materials: official publication of the Academy of Dental Materials, vol. 26, no. 2, pp.135-147, (2010).

DOI: 10.1016/j.dental.2009.09.006

Google Scholar

[24] K. Ono, A Simple Estimation Method of Weibull Modulus and Verification with Strength Data,, Applied Sciences, vol. 9, no. 8, (2019).

DOI: 10.3390/app9081575

Google Scholar

[25] W. Chaiwong, N. Samoh, T. Eksomtramage, and K. Kaewtatip, Surface-treated oil palm empty fruit bunch fiber improved tensile strength and water resistance of wheat gluten-based bioplastic,, Composites Part B: Engineering, vol. 176, p.107331, (2019).

DOI: 10.1016/j.compositesb.2019.107331

Google Scholar

[26] S. Patibanda, V. J. Nagda, J. Kalra, G. Sivakumar, R. Abrahams, and K. N. Jonnalagadda, Mechanical behavior of freestanding 8YSZ thin films under tensile and bending loads,, Surface and Coatings Technology, vol. 393, p.125771, (2020).

DOI: 10.1016/j.surfcoat.2020.125771

Google Scholar

[27] J. A. Palacios, and R. Ganesan, Reliability evaluation of Carbon-Nanotube-Reinforced-Polymer composites based on multiscale finite element model,, Composite Structures, vol. 229, p.111381, (2019).

DOI: 10.1016/j.compstruct.2019.111381

Google Scholar

[28] P. P. Mehta, and V. S. Pawar, Electrospun nanofiber scaffolds: Technology and applications,, Applications of Nanocomposite Materials in Drug Delivery, Inamuddin, A. M. Asiri and A. Mohammad, eds., pp.509-573: Woodhead Publishing, (2018).

DOI: 10.1016/b978-0-12-813741-3.00023-6

Google Scholar

[29] J. J. Cheng, J A. Alvarado-Contreras, M. A. Polak, and A. Penlidis, Chain Entanglements and Mechanical Behavior of High Density Polyethylene,, Journal of Engineering Materials and Technology, vol. 132, no. 1, (2009).

DOI: 10.1115/1.4000220

Google Scholar

[30] D. Kaelble, Polymer composite reliability,, Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE, p.32, (1979).

Google Scholar