[1]
M. Y. Khalid, Z. U. Arif, W. Ahmed, and H. Arshad, Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials,, Sustainable Materials and Technologies, vol. 31, pp. e00382, (2022).
DOI: 10.1016/j.susmat.2021.e00382
Google Scholar
[2]
M. R. Sanjay, G. R. Arpitha, and B. Yogesha, Study on Mechanical Properties of Natural - Glass Fibre Reinforced Polymer Hybrid Composites: A Review,, Materials Today: Proceedings, vol. 2, no. 4, pp.2959-2967, (2015).
DOI: 10.1016/j.matpr.2015.07.264
Google Scholar
[3]
J. Holbery, and D. Houston, Natural-fiber-reinforced polymer composites in automotive applications,, JOM, vol. 58, no. 11, pp.80-86, (2006).
DOI: 10.1007/s11837-006-0234-2
Google Scholar
[4]
T. Ghosh, H. C. Kim, R. De Kleine, T. J. Wallington, and B. R. Bakshi, Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: Front subframe case study,, Sustainable Materials and Technologies, vol. 28, pp. e00263, (2021).
DOI: 10.1016/j.susmat.2021.e00263
Google Scholar
[5]
E. Amasawa, M. Hasegawa, N. Yokokawa, H. Sugiyama, and M. Hirao, Environmental performance of an electric vehicle composed of 47% polymers and polymer composites,, Sustainable Materials and Technologies, vol. 25, pp. e00189, (2020).
DOI: 10.1016/j.susmat.2020.e00189
Google Scholar
[6]
A. Ganguly, S. Shankar, A. Das, M. Shukla, C. Swaroop, and T. Bhardwaj, Natural fibre reinforced composites: A review based on additive manufacturing routes and biodegradability perspective,, Materials Today: Proceedings, (2022).
DOI: 10.1016/j.matpr.2022.02.607
Google Scholar
[7]
R. K. Malviya, R. K. Singh, R. Purohit, and R. Sinha, Natural fibre reinforced composite materials: Environmentally better life cycle assessment – A case study,, Materials Today: Proceedings, vol. 26, pp.3157-3160, (2020).
DOI: 10.1016/j.matpr.2020.02.651
Google Scholar
[8]
T. K. Khieng, S. Debnath, E. Ting Chaw Liang, M. Anwar, A. Pramanik, and A. K. Basak, A Review on Mechanical Properties of Natural Fibre Reinforced Polymer Composites under Various Strain Rates,, Journal of Composites Science, vol. 5, no. 5, p.130, (2021).
DOI: 10.3390/jcs5050130
Google Scholar
[9]
A. Karimah, R. Ridho, S. Munawar, S. Adi, Ismadi, R. Damayanti, B. Subiyanto, W. Fatriasari, and A. Fudholi, A review on natural fibers for development of eco-friendly bio-composite,, Journal of Materials Research and Technology, vol. 13, pp.2442-2458, (2021).
DOI: 10.1016/j.jmrt.2021.06.014
Google Scholar
[10]
D. Wong, M. Anwar, S. Debnath, A. Hamid, S. Izman, A. K. Basak, and A. Pramani, Tensile Strength and Morphological Behavior of Treated Oil Pam Empty Fruit Bunch Particle Reinforced Polymeric Composite,, Materials Science Forum, vol. 1064, pp.27-37, (2022).
DOI: 10.4028/p-e12r4q
Google Scholar
[11]
S. A. Adnan, A. N. Ranjamdin, A. F. Osman, I. Ibrahim, L. D. Sheng, N. H. A. Zaidi, and M. H. Leman, Mechanical properties of thermoplastic starch/oil palm empty fruit bunch biocomposite film,, in Proceedings of Green Design and Manufacture 2020, (2021).
DOI: 10.1063/5.0044668
Google Scholar
[12]
N. A. Ramlee, M. Jawaid, E. S. Zainudin, and S. A. K. Yamani, Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites,, Journal of Materials Research and Technology, vol. 8, no. 4, pp.3466-3474, (2019).
DOI: 10.1016/j.jmrt.2019.06.016
Google Scholar
[13]
T. S. Cheng, D. N. Uy Lan, S. Phillips, and L. Q. N. Tran, Characteristics of oil palm empty fruit bunch fiber and mechanical properties of its unidirectional composites,, Polymer Composites, vol. 40, no. 3, pp.1158-1164, (2019).
DOI: 10.1002/pc.24824
Google Scholar
[14]
S. Mahalingam, V. Gopalan, H. Velivela, V. Pragasam, Prashanth, and V. Suthenthiraveerappa, Studies on Shear Strength of CNT/Coir Fibre/Fly Ash Reinforced Epoxy Polymer Composites,, Emerging Materials Research, vol. 9, no. 1, pp.1-14, (2020).
DOI: 10.1680/jemmr.19.00098
Google Scholar
[15]
L. Zeng, X. Huang, X. Li, R. Li, Y. Li, and Y. Xiong, A gelatin-treated carbon nanofiber/epoxy nanocomposite with significantly improved multifunctional properties,, Materials Today Communications, vol. 24, p.101006, (2020).
DOI: 10.1016/j.mtcomm.2020.101006
Google Scholar
[16]
A. A. Tarhini, and A. R. Tehrani-Bagha, Graphene-based polymer composite films with enhanced mechanical properties and ultra-high in-plane thermal conductivity,, Composites Science and Technology, vol. 184, p.107797, (2019).
DOI: 10.1016/j.compscitech.2019.107797
Google Scholar
[17]
L. Amoroso, E. L. Heeley, S. N. Ramadas, and T. McNally, Crystallization behaviour of composites of HDPE and MWCNTs: The effect of nanotube dispersion, orientation and polymer deformation,, Polymer, vol. 201, p.122587, (2020).
DOI: 10.1016/j.polymer.2020.122587
Google Scholar
[18]
S. Pimenta, Fibre failure modelling,, Numerical Modelling of Failure in Advanced Composite Materials, P. P. Camanho and S. R. Hallett, eds., pp.193-224: Woodhead Publishing, (2015).
DOI: 10.1016/b978-0-08-100332-9.00008-6
Google Scholar
[19]
P. Jiang, Y. Xing, X. Jia, and B. Guo, Weibull Failure Probability Estimation Based on Zero-Failure Data,, Mathematical Problems in Engineering, vol. 2015, pp.1-8, (2015).
DOI: 10.1155/2015/681232
Google Scholar
[20]
U. A. Khashaba, Fatigue and reliability analysis of unidirectional GFRP composites under rotating bending loads,, Journal of Composite Materials, vol. 37, no. 4, pp.317-331, (2003).
DOI: 10.1177/0021998303037004680
Google Scholar
[21]
D.-L. Nguyen, D.-K. Thai, T.-T. Ngo, T.-K. Tran, and T.-T. Nguyen, Weibull modulus from size effect of high-performance fiber-reinforced concrete under compression and flexure,, Construction and Building Materials, vol. 226, pp.743-758, (2019).
DOI: 10.1016/j.conbuildmat.2019.07.234
Google Scholar
[22]
Q. Fu, Bioactive Glass Scaffolds for Bone Tissue Engineering,, Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses, G. Kaur, ed., pp.417-442: Woodhead Publishing, (2019).
DOI: 10.1016/b978-0-08-102196-5.00015-x
Google Scholar
[23]
J. B. Quinn, and G. D. Quinn, A practical and systematic review of Weibull statistics for reporting strengths of dental materials,, Dental materials: official publication of the Academy of Dental Materials, vol. 26, no. 2, pp.135-147, (2010).
DOI: 10.1016/j.dental.2009.09.006
Google Scholar
[24]
K. Ono, A Simple Estimation Method of Weibull Modulus and Verification with Strength Data,, Applied Sciences, vol. 9, no. 8, (2019).
DOI: 10.3390/app9081575
Google Scholar
[25]
W. Chaiwong, N. Samoh, T. Eksomtramage, and K. Kaewtatip, Surface-treated oil palm empty fruit bunch fiber improved tensile strength and water resistance of wheat gluten-based bioplastic,, Composites Part B: Engineering, vol. 176, p.107331, (2019).
DOI: 10.1016/j.compositesb.2019.107331
Google Scholar
[26]
S. Patibanda, V. J. Nagda, J. Kalra, G. Sivakumar, R. Abrahams, and K. N. Jonnalagadda, Mechanical behavior of freestanding 8YSZ thin films under tensile and bending loads,, Surface and Coatings Technology, vol. 393, p.125771, (2020).
DOI: 10.1016/j.surfcoat.2020.125771
Google Scholar
[27]
J. A. Palacios, and R. Ganesan, Reliability evaluation of Carbon-Nanotube-Reinforced-Polymer composites based on multiscale finite element model,, Composite Structures, vol. 229, p.111381, (2019).
DOI: 10.1016/j.compstruct.2019.111381
Google Scholar
[28]
P. P. Mehta, and V. S. Pawar, Electrospun nanofiber scaffolds: Technology and applications,, Applications of Nanocomposite Materials in Drug Delivery, Inamuddin, A. M. Asiri and A. Mohammad, eds., pp.509-573: Woodhead Publishing, (2018).
DOI: 10.1016/b978-0-12-813741-3.00023-6
Google Scholar
[29]
J. J. Cheng, J A. Alvarado-Contreras, M. A. Polak, and A. Penlidis, Chain Entanglements and Mechanical Behavior of High Density Polyethylene,, Journal of Engineering Materials and Technology, vol. 132, no. 1, (2009).
DOI: 10.1115/1.4000220
Google Scholar
[30]
D. Kaelble, Polymer composite reliability,, Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE, p.32, (1979).
Google Scholar