Investigation of Fracture Mechanisms of Self-Reinforced Polypropylene/Polycarbonate Composites Subjected to Fatigue Loading

Article Preview

Abstract:

Self-reinforced polymeric composites have numerous advantages over traditional polymers, including increased mechanical strength, fracture toughness, and other mechanical properties. A special type of such composites can be obtained using non-conventional molding techniques. The investigated self-reinforced composites have layered structure, where layers are created by the same material in numerous molding cycles in the manufacturing process, and have gradient mechanical properties. According to this, it is of high interest to investigate structural behavior of these materials under fatigue loading, including temperature effects and fracture mechanisms occurring during fatigue. The results of the performed studies proved complex fracture mechanisms of self-reinforced polymeric composites manufactured using the applied unconventional injection molding technique due to variability of mechanical properties over the thickness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1075)

Pages:

65-70

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bilewicz, J.C. Viana, A.M. Cunha and L.A. Dobrzański: J. Achiev. Mater. Manuf. Eng. Vol. 15 (2006), p.159.

Google Scholar

[2] Y. Swolfs, Q. Zhang, J. Baets and I. Verpoest: Compos. Part A-Appl. S. Vol. 65 (2014), p.38.

Google Scholar

[3] S. Kumar, C.M. Wu, W.Y. Lai and P.C. Lin: Compos. Struct. Vol. 255 (2021), 112981.

Google Scholar

[4] G. Romhány, C.M. Wu, W.Y. Lai and J. Karger-Kocsis: Compos. Sci. Technol. Vol. 132 (2016), p.76.

Google Scholar

[5] A. Kmetty, T. Bárány and J. Karger-Kocsis: Prog. Polym. Sci. Vol. 35 (2010), p.1288.

Google Scholar

[6] C.I. Ogbonna, G. Kalay, P.S. Allan and M.J. Bevis: J. Appl. Polym. Sci. Vol. 58 (1995), p.2131.

Google Scholar

[7] M. Bilewicz, J.C. Viana and L.A. Dobrzański: J. Achiev. Mater. Manuf. Eng. Vol. 24 (2007), p.43.

Google Scholar

[8] M. Bilewicz, J.C. Viana and L.A. Dobrzański: Arch. Mater. Sci. Eng. Vol. 30 (2008), p.69.

Google Scholar

[9] L.A. Dobrzański, M. Król, M. Bilewicz and J.C. Viana: J. Achiev. Mater. Manuf. Eng. Vol. 27 (2008), p.19.

Google Scholar

[10] A.I. Isayev and M. Modic: Polym. Compos. Vol. 8 (1987), p.158.

Google Scholar

[11] X. Zhuang and X. Yan: Compos. Sci. Technol. Vol. 66 (2006), p.444.

Google Scholar

[12] C. Schneider, S. Kazemahvazi, M. Åkermo and D. Zenkert: Polym. Test. Vol. 32 (2013), p.221.

Google Scholar

[13] P.N.B. Reis, L. Gorbatikh, J. Ivens and S.V. Lomov: Compos. Struct. Vol. 209 (2019), p.802.

Google Scholar

[14] A. Katunin, A. Wronkowicz, M. Bilewicz and D. Wachla: Arch. Civ. Mech. Eng. Vol. 17 (2017), p.806.

Google Scholar

[15] A. Katunin and A. Wronkowicz: Compos. Struct. Vol. 180 (2017), p.1.

Google Scholar