Flexible Graphene-Copper Nanocomposite for Potential Wearable Electronics Applications

Article Preview

Abstract:

The demand for flexible and wearable electrochemical sensors has surged due to their low cost and portability. This study produces and characterizes low-cost and environmentally friendly flexible laser engraved graphene/Cu nanoparticles composite materials as a potential electrode for electronic applications. The electrode is fabricated by directly engraving Polyimide substrate using a CO2 laser machine to produce Laser Engraved Graphene (LEG). The electrode is then modified with copper nanoparticles via a one-step pulse electrodeposition technique to be characterized structurally, mechanically, and electrochemically using SEM, XRD, bending test, electrochemical impedance spectroscopy, and cyclic voltammetry to assess their stability and electrocatalytic activity. The laser irradiation of PI results in 3D porous graphene structure formation that increases electron transfer rate and the electrochemically active surface area. Copper deposition improves the sensitivity of LEG by its high conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1075)

Pages:

39-47

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I. A. Kinloch, and R. J. Young, Copper/graphene composites: a review,, Journal of Materials Science, vol. 54, no. 19. Springer New York LLC, p.12236–12289, Oct. 15, 2019.

DOI: 10.1007/s10853-019-03703-5

Google Scholar

[2] S. K. Tiwari, S. Sahoo, N. Wang, and A. Huczko, Graphene research and their outputs: Status and prospect,, Journal of Science: Advanced Materials and Devices, vol. 5, no. 1. Elsevier B.V., p.10–29, Mar. 01, 2020.

DOI: 10.1016/j.jsamd.2020.01.006

Google Scholar

[3] A. E. Rashed and A. A. El-Moneim, Two steps synthesis approach of MnO2/graphene nanoplates/graphite composite electrode for supercapacitor application,, Materials Today Energy, vol. 3, p.24–31, Mar. 2017,.

DOI: 10.1016/j.mtener.2017.02.004

Google Scholar

[4] M. Gamil, O. Tabata, K. Nakamura, A. M. R. F. El-Bab, and A. A. El-Moneim, Investigation of a new high sensitive micro-electromechanical strain gauge sensor based on graphene piezoresistivity,, in Key Engineering Materials, 2014, vol. 605, p.207–210.

DOI: 10.4028/www.scientific.net/kem.605.207

Google Scholar

[5] P. Suvarnaphaet and S. Pechprasarn, Graphene-based materials for biosensors: A review,, Sensors (Switzerland), vol. 17, no. 10. MDPI AG, Oct. 01, 2017.

DOI: 10.3390/s17102161

Google Scholar

[6] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Recent advances in graphene based polymer composites,, Progress in Polymer Science (Oxford), vol. 35, no. 11. Elsevier Ltd, p.1350–1375, 2010.

DOI: 10.1016/j.progpolymsci.2010.07.005

Google Scholar

[7] A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, and L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites,, Nano Materials Science, vol. 1, no. 1, p.31–47, Mar. 2019,.

DOI: 10.1016/j.nanoms.2019.02.004

Google Scholar

[8] M. Saeed, Y. Alshammari, S. A. Majeed, and E. Al-Nasrallah, Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review,, Molecules, vol. 25, no. 17. MDPI AG, Sep. 01, 2020.

DOI: 10.3390/molecules25173856

Google Scholar

[9] R. Ikram, B. M. Jan, and W. Ahmad, Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges,, Journal of Materials Research and Technology, vol. 9, no. 6. Elsevier Editora Ltda, p.15924–15951, Nov. 01, 2020.

DOI: 10.1016/j.jmrt.2020.11.043

Google Scholar

[10] D. Kwong Hong Tsang et al., Chemically Functionalised Graphene FET Biosensor for the Label-free Sensing of Exosomes,, Scientific Reports, vol. 9, no. 1, Dec. 2019,.

DOI: 10.1038/s41598-019-50412-9

Google Scholar

[11] A. A. Abdelsalam, S. Araby, S. H. El-Sabbagh, A. Abdelmoneim, and M. A. Hassan, Effect of carbon black loading on mechanical and rheological properties of natural rubber/styrene-butadiene rubber/nitrile butadiene rubber blends,, Journal of Thermoplastic Composite Materials, vol. 34, no. 4, p.490–507, Apr. 2021,.

DOI: 10.1177/0892705719844556

Google Scholar

[12] F. M. Vivaldi et al., Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing,, ACS Applied Materials and Interfaces, vol. 13, no. 26. American Chemical Society, p.30245–30260, Jul. 07, 2021.

DOI: 10.1021/acsami.1c05614

Google Scholar

[13] L. Wang, Z. Wang, A. N. Bakhtiyari, and H. Zheng, A comparative study of laser-induced graphene by co2 infrared laser and 355 nm ultraviolet (Uv) laser,, Micromachines (Basel), vol. 11, no. 12, p.1–9, Dec. 2020,.

DOI: 10.3390/mi11121094

Google Scholar

[14] Z. Zhang, M. Song, J. Hao, K. Wu, C. Li, and C. Hu, Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates,, Carbon N Y, vol. 127, p.287–296, Feb. 2018,.

DOI: 10.1016/j.carbon.2017.11.014

Google Scholar

[15] A. F. Carvalho et al., Laser-Induced Graphene Strain Sensors Produced by Ultraviolet Irradiation of Polyimide,, Advanced Functional Materials, vol. 28, no. 52, Dec. 2018,.

DOI: 10.1002/adfm.201805271

Google Scholar

[16] J. Lin et al., Laser-induced porous graphene films from commercial polymers,, Nature Communications, vol. 5, 2014,.

Google Scholar

[17] A. B. El-Basaty, E. Moustafa, A. N. Fouda, and A. A. El-Moneim, 3D hierarchical graphene/CNT with interfacial polymerized polyaniline nano-fibers,, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 226, Feb. 2020,.

DOI: 10.1016/j.saa.2019.117629

Google Scholar

[18] T. M. Magne et al., Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications,, Journal of Nanostructure in Chemistry, Sep. 2021,.

Google Scholar

[19] A. A. El-Moneim, E. Akiyama, K. M. Ismail, and K. Hashimoto, Corrosion behaviour of sputter-deposited Mg-Zr alloys in a borate buffer solution,, Corrosion Science, vol. 53, no. 9, p.2988–2993, Sep. 2011,.

DOI: 10.1016/j.corsci.2011.05.043

Google Scholar

[20] K. M. El‐Khatib, M. O. Abou Helal, A. A. El‐Moneim, and H. Tawfik, Corrosion stability of SUS316L HVOF sprayed coatings as lightweight bipolar plate materials in PEM fuel cells,, Anti-Corrosion Methods and Materials, vol. 51, no. 2, p.136–142, Jan. 2004,.

DOI: 10.1108/00035590410523238

Google Scholar

[21] A. Perejón, P. E. Sánchez-Jiménez, J. M. Criado, and L. A. Pérez-Maqueda, Magnesium hydride for energy storage applications: The kinetics of dehydrogenation under different working conditions,, Journal of Alloys and Compounds, vol. 681, p.571–579, Oct. 2016,.

DOI: 10.1016/j.jallcom.2016.04.191

Google Scholar

[22] D. Jiang et al., Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene,, Biosensors and Bioelectronics, vol. 54, p.273–278, Apr. 2014,.

DOI: 10.1016/j.bios.2013.11.005

Google Scholar

[23] E. Akyilmaz, E. Yorganci, and E. Asav, Do copper ions activate tyrosinase enzyme? A biosensor model for the solution,, Bioelectrochemistry, vol. 78, no. 2, p.155–160, Jun. 2010,.

DOI: 10.1016/j.bioelechem.2009.09.007

Google Scholar

[24] N. Verma and N. Kumar, Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon,, ACS Biomaterials Science and Engineering, vol. 5, no. 3, p.1170–1188, Mar. 2019,.

DOI: 10.1021/acsbiomaterials.8b01092

Google Scholar

[25] S. Phetsang, P. Kidkhunthod, N. Chanlek, J. Jakmunee, P. Mungkornasawakul, and K. Ounnunkad, Copper/reduced graphene oxide film modified electrode for non-enzymatic glucose sensing application,, Scientific Reports, vol. 11, no. 1, Dec. 2021,.

DOI: 10.1038/s41598-021-88747-x

Google Scholar