Plasma-Assisted Growth of Two-Dimensional Ga2O3/ Gas Heterophases on Liquid Alloy Substrate for Nanoelectronic Applications

Article Preview

Abstract:

Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic devices based on 2D materials. Herein, the incorporation of sulfur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside of amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophases were developed between amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of Photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for fabrication of 2D metal oxide devices with tunable electronic characteristics similar to nanojunction memristors and transistors.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1075)

Pages:

49-55

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Karbalaei Akbari, Z. Hai, Z. Wei, R. K. Ramachandran, C. Detavernier, M. Patel, J. Kim, F. Verpoort, H. Lu, and S. Zhuiykov: J. Mater. Chem. C. Vol. 7 (2019) p.5584.

DOI: 10.1039/c9tc01079c

Google Scholar

[2] T. Daeneke, K. Khoshmanesh, N. Mahmood, I. A. De Castro, D. Esrafilzadeh, S. J. Barrow, M. D. Dickey, and K. Kalantar-Zadeh: Chem. Soc. Rev. Vol. 47 (2018) p.4073.

DOI: 10.1039/c7cs00043j

Google Scholar

[3] M. Karbalaei Akbari, F. Verpoort, and S. Zhuiykov: J. Mater. Chem. A. Vol. 9 (2021) p.34.

Google Scholar

[4] M. Li, Lin Li, Y. Fan, L. Huang, D. Geng, and W. Yang: Nanos. Adv. Vol. 3 (2021) p.4411.

Google Scholar

[5] M. Kim, and S. Seo: Mol. Cryst. Liq. Vol. 685 (2019) p.40.

Google Scholar

[6] B. R. Tak, S. Kumar, A. K. Kapoor, D. Wang, X. Li, H. Sun, and R. Singh: J. Phys. D: Appl. Phys. Vol. 54 (2021) 453002.

Google Scholar

[7] D. Gutiérrez, J. Alejandro de Sousa, M. Mas-Torrent, and N. Crivillers: ACS Appl. Electron. Mater. Vol. 2 (2020) p.3093.

Google Scholar

[8] A. R. Brill, E. Koren, and G. de Ruiter: J. Mater. Chem. C Vol. 9 (2021) p.11569.

Google Scholar

[9] R. Ibragimova, P. Erhart, P. Rinke, and H. P. Komsa: J. Phys. Chem. Lett. Vol. 12 (2021) p.2384.

Google Scholar

[10] N. Martín, N. Tagmatarchis, Q. H. Wang, and X. Zhang: Chemistry Vol. 26 (2020) p.6292.

Google Scholar

[11] A. Zavabeti, J. Z. Ou, B. J. Carey, N. Syed, R. Orrell-Trigg, E. L. H. Mayes, C. Xu, O Kavehei, A. P. O'Mullane, R. B. Kaner, K. Kalantar-zadeh, and T. Daeneke: Science Vol. 358 (2017) p.332.

DOI: 10.1126/science.aao4249

Google Scholar

[12] R. S. Datta, N. Syed, A. Zavabeti, A. Jannat, M. Mohiuddin, M. Rokunuzzaman, B. Y. Zhang, M. A. Rahman, P. Atkin, K. A. Messalea, M. B. Ghasemian, E. D. Gaspera, S. Bhattacharyya, M. S. Fuhrer, S. P. Russo, C. F. McConville, D. Esrafilzadeh, K. Kalantar-Zadeh, and T. Daeneke: Nat. Electron. Vol. 3 (2020) 51.

DOI: 10.1038/s41928-019-0353-8

Google Scholar

[13] H. Khan, N. Mahmood, A. Zavabeti, A. Elbourne, M. D. A. Rahman, B. Y. Zhang, V. Krishnamurthi, P. Atkin, M. B. Ghasemian, J. Yang, G. Zheng, A. R. Ravindran, S. Walia, L. Wang, S. P. Russo, T. Daeneke, Y. Li, and K. Kalantar-Zadeh: Nat. Commun. Vol. 11 (2020) 3449.

DOI: 10.1038/s41467-020-17296-0

Google Scholar

[14] K. Gutsol, T. Nunnally, A. Rabinovich, A. Fridman , A. Starikovskiy, A. Gutsol, and A. Kemoun: Int. J. Hydrog. Energy Vol. 37 (2012) 1335e1347.

DOI: 10.1016/j.ijhydene.2011.10.048

Google Scholar

[15] E. Linga Reddy, V. M. Biju, and Ch. Subrahmanyam: Appl. Energy Vol.95 (2012) p.87.

Google Scholar

[16] M. Jędrzejczyk, K. Zbudniewek, J. Rynkowski, V. Keller, J. Grams, A. M. Ruppert, and N. Keller: Environ. Sci. Pollut. Res. Vol. 24 (2017) p.26792.

DOI: 10.1007/s11356-017-0253-2

Google Scholar

[17] E. Dartois, Ph. Duret, U. Marboeuf, and B. Schmitt: Icarus Vol. 220 (2012) p.427.

Google Scholar

[18] A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H. C. Nerl, E. McGuire, A. Seral-Ascaso, Q. M. Ramasse, N. McEvoy, S. Winters, N. C. Berner, D. McCloskey, J. F. Donegan, G. S. Duesberg, V. Nicolosi, and J. N. Coleman: Chem. Mater. Vol. 27 (2015) p.3483.

DOI: 10.1021/acs.chemmater.5b00910

Google Scholar

[19] N. Schneider, M. Fregnaux, M. Bouttemy, F. Donsanti, A. Etcheberry, and D. Lincot: Today Chem. Vol. 10 (2018) 142e152.

Google Scholar

[20] X. Wang, Y. Sheng, R. J. Chang, J. K. Lee, Y. Zhou, S. Li, T. Chen, H. Huang, B. F. Porter, H. Bhaskaran, and J. H. Warner: ACS Omega Vol. 3 (2018) p.7897.

Google Scholar

[21] B. Carey, J Ou, R. Clark, K. J. Berean, A. Zavabeti, A. S. R. Chesman, S. P. Russo, D. W. M. Lau, Z. Xu, Q. Bao, O. Kavehei, B. C. Gibson, M. D. Dickey, R. B. Kaner, T. Daeneke, and K. Kalantar-Zadeh: Nat Commun. Vol. 8 (2017) 14482.

DOI: 10.1038/ncomms14482

Google Scholar

[22] M. I. Zappia, G. Bianca, S. Bellani, N. Curreli, Z. Sofer, M. Serri, L. Najafi, M. Piccinni, R. Oropesa-Nuñez, P. Marvan, V. Pellegrini, I. Kriegel, M. Prato, A. Cupolillo, and F. Bonaccorso: J. Phys. Chem. C Vol. 125 (2021) p.11857.

DOI: 10.1021/acs.jpcc.1c03597

Google Scholar