Influence of Lignin Concentration on Polyacrylonitrile Nanofibers for Lead Removal

Article Preview

Abstract:

Water contamination by heavy metals is one of the most serious environmental problems and harms human life. Numerous nanotechnologies have been utilized to overcome this problem so far. Herein, we introduce lignin/polyacrylonitrile (PAN) composite nanofibers prepared via electrospinning for the removal of lead from aqueous solution. The effects of blend ratios between lignin and PAN concentration (LP) were investigated. The performance of adsorption process depends on the following parameters including contact time of adsorbent and adsorbate (equilibrium times: after 16 h. for 10 mg/L of lead concentration), types of nanofibers (LP55 at 1 g/L), and the percentage of lead removal was 72.5 % within 24 hours by LP55 nanofibers. The highest correlation coefficients were performed for the pseudo-second order kinetic model both LP55 and PAN nanofibers. This study demonstrates that the potential of the biomass-derived material with nanotechnology for environmental remediation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1075)

Pages:

27-32

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Jalali, H. Ghafourian, Y. Asef, S. J. Davarpanah, and S. Sepehr, Removal and recovery of lead using nonliving biomass of marine algae,, J. Hazard. Mater., vol. 92, no. 3, p.253–262, Jun. 2002,.

DOI: 10.1016/s0304-3894(02)00021-3

Google Scholar

[2] P. Apostoli, P. Kiss, S. Porru, J. P. Bonde, M. Vanhoorne, and A. study group, Male Reproductive Toxicity of Lead in Animals and Humans,, Occup. Environ. Med., vol. 55, no. 6, p.364–374, (1998).

DOI: 10.1136/oem.55.6.364

Google Scholar

[3] M. Nemati, S. M. Hosseini, and M. Shabanian, Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal,, J. Hazard. Mater., vol. 337, p.90–104, Sep. 2017,.

DOI: 10.1016/j.jhazmat.2017.04.074

Google Scholar

[4] N. Abdullah, N. Yusof, W. J. Lau, J. Jaafar, and A. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies,, J. Ind. Eng. Chem., vol. 76, Mar. 2019,.

DOI: 10.1016/j.jiec.2019.03.029

Google Scholar

[5] N. Wang et al., One-step synthesis of cake-like biosorbents from plant biomass for the effective removal and recovery heavy metals: Effect of plant species and roles of xanthation,, Chemosphere, vol. 266, p.129129, Mar. 2021,.

DOI: 10.1016/j.chemosphere.2020.129129

Google Scholar

[6] T. A. Kurniawan, G. Y. S. Chan, W. Lo, and S. Babel, Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals,, Sci. Total Environ., vol. 366, no. 2, p.409–426, Aug. 2006,.

DOI: 10.1016/j.scitotenv.2005.10.001

Google Scholar

[7] M. L. Rahman et al., Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater,, J. Appl. Polym. Sci., vol. 138, p.49671, Jul. 2020,.

DOI: 10.1002/app.49671

Google Scholar

[8] J.-Y. Bottero, J. Rose, and M. R. Wiesner, Nanotechnologies: tools for sustainability in a new wave of water treatment processes,, Integr. Environ. Assess. Manag., vol. 2, no. 4, p.391–395, Oct. (2006).

DOI: 10.1002/ieam.5630020411

Google Scholar

[9] A. Y. Grün et al., Effects of low dose silver nanoparticle treatment on the structure and community composition of bacterial freshwater biofilms,, PLOS ONE, vol. 13, no. 6, p. e0199132, Jun. 2018,.

DOI: 10.1371/journal.pone.0199132

Google Scholar

[10] J. Xu et al., A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism,, Chemosphere, vol. 195, p.351–364, Mar. 2018,.

DOI: 10.1016/j.chemosphere.2017.12.061

Google Scholar

[11] M. R. Karim, M. O. Aijaz, N. H. Alharth, H. F. Alharbi, F. S. Al-Mubaddel, and M. R. Awual, Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater,, Ecotoxicol. Environ. Saf., vol. 169, p.479–486, Mar. 2019,.

DOI: 10.1016/j.ecoenv.2018.11.049

Google Scholar

[12] Y. Li, T. Qiu, and X. Xu, Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions,, Eur. Polym. J., vol. 49, no. 6, p.1487–1494, Jun. 2013,.

DOI: 10.1016/j.eurpolymj.2013.04.002

Google Scholar

[13] B. M. Thamer, A. Aldalbahi, M. Moydeen A, A. M. Al-Enizi, H. El-Hamshary, and M. H. El-Newehy, Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions,, Sci. Rep., vol. 9, no. 1, Art. no. 1, Dec. 2019,.

DOI: 10.1038/s41598-019-55679-6

Google Scholar

[14] A. A. Hamad, M. S. Hassouna, T. I. Shalaby, M. F. Elkady, M. A. Abd Elkawi, and H. A. Hamad, Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals,, Int. J. Biol. Macromol., vol. 151, p.1299–1313, May 2020,.

DOI: 10.1016/j.ijbiomac.2019.10.176

Google Scholar

[15] Z.-M. Huang, Y. Zhang, and M. Kotaki, A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites,, Compos. Sci. Technol., vol. 63, p.2223–2253, Nov. 2003,.

Google Scholar

[16] X. Lu, C. Wang, and Y. Wei, One-dimensional composite nanomaterials: synthesis by electrospinning and their applications,, Small Weinh. Bergstr. Ger., vol. 5, no. 21, p.2349–2370, Nov. 2009,.

DOI: 10.1002/smll.200900445

Google Scholar

[17] S. Peng et al., Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment,, Chem. Soc. Rev., vol. 45, no. 5, p.1225–1241, Feb. 2016,.

DOI: 10.1039/c5cs00777a

Google Scholar

[18] R. J. Beck, Y. Zhao, H. Fong, and T. J. Menkhaus, Electrospun lignin carbon nanofiber membranes with large pores for highly efficient adsorptive water treatment applications,, J. Water Process Eng., vol. 16, p.240–248, Apr. 2017,.

DOI: 10.1016/j.jwpe.2017.02.002

Google Scholar

[19] C. Lai et al., Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors,, J. Power Sources, vol. 247, p.134–141, Feb. 2014,.

DOI: 10.1016/j.jpowsour.2013.08.082

Google Scholar

[20] I. Dallmeyer, F. Ko, and J. F. Kadla, Electrospinning of Technical Lignins for the Production of Fibrous Networks,, J. Wood Chem. Technol., vol. 30, no. 4, p.315–329, Nov. 2010,.

DOI: 10.1080/02773813.2010.527782

Google Scholar

[21] V. Poursorkhabi, A. Mohanty, and M. Misra, Electrospinning of Aqueous Lignin/Poly(ethylene oxide) Complexes,, J. Appl. Polym. Sci., vol. 132, Jan. 2015,.

DOI: 10.1002/app.41260

Google Scholar

[22] S.-X. Wang, L. Yang, L. P. Stubbs, X. Li, and C. He, Lignin-Derived Fused Electrospun Carbon Fibrous Mats as High Performance Anode Materials for Lithium Ion Batteries,, ACS Publications, Nov. 26, 2013. https://pubs.acs.org/doi/pdf/10.1021/am4043867 (accessed Apr. 02, 2022).

DOI: 10.1021/am4043867

Google Scholar

[23] M. Ago, K. Okajima, J. E. Jakes, P. Sunkyu, and O. J. Rojas, Lignin-Based Electrospun Nanofibers Reinforced with Cellulose Nanocrystals,, Biomacromolecules 2012 13 918-926 2012, vol. 13, p.918–926, (2012).

DOI: 10.1021/bm201828g

Google Scholar

[24] D. I. Choi, J.-N. Lee, J. Song, P.-H. Kang, J.-K. Park, and Y. M. Lee, Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes,, J. Solid State Electrochem., vol. 17, no. 9, p.2471–2475, Sep. 2013,.

DOI: 10.1007/s10008-013-2112-5

Google Scholar

[25] D. Seo, J. Jeun, H. Kim, and P. Kang, Preparation and characterization of the carbon nanofiber mat produced from electrospun pan/lignin precursors by electron beam irradiation,, Rev. Adv. Mater. Sci., vol. 28, p.31–34, Jun. (2011).

Google Scholar

[26] X. Xu et al., Porous Core-Shell Carbon Fibers Derived from Lignin and Cellulose Nanofibrils,, Mater. Lett., vol. 109, Jul. 2013,.

Google Scholar

[27] X. Xu, J. Zhou, L. Jiang, G. Lubineau, S. Payne, and D. Gutschmidt, Lignin-based Carbon Fibers: Carbon Nanotube Decoration and Superior Thermal Stability,, Carbon, vol. 80, Dec. 2014,.

DOI: 10.1016/j.carbon.2014.08.042

Google Scholar

[28] N. A. Nordin, N. A. Rahman, and A. H. Abdullah, Effective Removal of Pb(II) Ions by Electrospun PAN/Sago Lignin-Based Activated Carbon Nanofibers,, p.21, (2020).

DOI: 10.3390/molecules25133081

Google Scholar

[29] R. Ding, H. Wu, M. Thunga, N. Bowler, and M. R. Kessler, Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends,, Carbon, vol. 100, p.126–136, Apr. 2016,.

DOI: 10.1016/j.carbon.2015.12.078

Google Scholar

[30] C. Fan, K. Li, J. Li, D. Ying, Y. Wang, and J. Jia, Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles,, J. Hazard. Mater., vol. 326, p.211–220, Mar. 2017,.

DOI: 10.1016/j.jhazmat.2016.12.036

Google Scholar

[31] Y. S. Ho and G. McKay, Pseudo-second order model for sorption processes,, Process Biochem., vol. 34, no. 5, p.451–465, Jul. 1999,.

DOI: 10.1016/s0032-9592(98)00112-5

Google Scholar

[32] Z. Cai, X. Song, Q. Zhang, and T. Zhai, Electrospun polyindole nanofibers as a nano-adsorbent for heavy metal ions adsorption for wastewater treatment,, Fibers Polym., vol. 18, no. 3, p.502–513, Mar. 2017,.

DOI: 10.1007/s12221-017-6988-z

Google Scholar