Reduced Aging of Thermoplastic Starch Films with Green Hybrid Filler

Article Preview

Abstract:

Thermoplastic starch film (TPSF) and hybrid thermoplastic starch film (HTPSF) were stored for 3 months to study the effect of aging on the mechanical properties and crystalline structure of the starch biopolymer. The alteration of the mechanical properties and crystalline structure of the films were analyzed through tensile test and differential scanning calorimetry (DSC) analysis. The incorporation of the hybrid filler (microcrystalline cellulose + nanobentonite) in the HTPSF has effectively prevented retrogradation happen in the starch structure. In contrary, the TPSF showed high degree of retrogradation resulted in significant decrement in elongation at break which was not observed in the HTPSF after 3 months of aging test.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1075)

Pages:

59-64

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Sheng et al.: AIP Conference Proceedings, vol. 2339, (2021) p.20045.

Google Scholar

[2] H. Cheng et al.: Trends in Food Science Technology, vol. 114, (2021) pp.70-82.

Google Scholar

[3] T. Jiang, Q. Duan, J. Zhu, H. Liu, and L. Yu: Advanced Industrial and Engineering Polymer Research, vol. 3, no. 1, (2020) pp.8-18.

Google Scholar

[4] E. Csiszar, D. Kun, and E. Fekete: Polymers (Basel), vol. 13, no. 18, (2021).

Google Scholar

[5] Y.-X. Liu, Z.-S. Liang, J.-N. Liang, and L.-Y. Liao: Journal of Polymer Research, vol. 28, no. 5, (2021) pp.1-12.

Google Scholar

[6] K. E. Rivadeneira-Velasco, C. A. Utreras-Silva, A. Díaz-Barrios, A. E. Sommer-Márquez, J. P. Tafur, and R. M. Michell: Polymers, vol. 13, no. 19, (2021) p.3227.

DOI: 10.3390/polym13193227

Google Scholar

[7] Z. Diyana et al.: Polymers, vol. 13, no. 9, (2021) p.1396.

Google Scholar

[8] A. d. S.M. de Freitas et al.: Journal of Biomaterials Science, Polymer Edition, no. just-accepted, (2021) pp.1-39.

Google Scholar

[9] A. Vinod, Y. Gowda, S. Krishnasamy, M. Sanjay, and S. Siengchin: Natural Fiber‐Reinforced Composites: Thermal Properties Applications, (2022) pp.17-30.

DOI: 10.1002/9783527831562.ch2

Google Scholar

[10] A. F. Osman, A. M. T. L. Ashafee, S. A. Adnan, and A. Alakrach: Polymer Engineering & Science, vol. 60, no. 4, (2020) pp.810-822.

Google Scholar

[11] D. S. Lai et al.: J Polymers, vol. 13, no. 6, (2021) p.897.

Google Scholar

[12] E. Fekete, E. Bella, E. Csiszar, and J. Moczo: Int J Biol Macromol, vol. 136, (2019) pp.1026-1033.

Google Scholar

[13] C. E. Montilla‐Buitrago, R. A. Gómez‐López, J. F. Solanilla‐Duque, L. Serna‐Cock, and H. S. Villada‐Castillo: Starch - Stärke, vol. 73, no. 9-10, (2021).

DOI: 10.1002/star.202100060

Google Scholar

[14] K. Zhang et al.: Int J Biol Macromol, vol. 154, (2019) pp.1471-1477.

Google Scholar

[15] H. Schmitt, A. Guidez, K. Prashantha, J. Soulestin, M. F. Lacrampe, and P. Krawczak: Carbohydr Polym, vol. 115, (2015) pp.364-72.

DOI: 10.1016/j.carbpol.2014.09.004

Google Scholar

[16] A. Vinod, Y. Gowda, S. Krishnasamy, M. Sanjay, and S. Siengchin: Natural Fiber‐Reinforced Composites: Thermal Properties Applications, (2022) pp.17-30.

DOI: 10.1002/9783527831562.ch2

Google Scholar