[1]
Dresselhaus, M.; Thomas, I., Alternative energy technologies. Nature 2001, 414 (6861), 332.
Google Scholar
[2]
Boyle, G., Renewable energy. Renewable Energy, by Edited by Godfrey Boyle, p.456. Oxford University Press, May 2004. ISBN-10: 0199261784. ISBN-13: 9780199261789 2004, 456.
Google Scholar
[3]
Panwar, N.; Kaushik, S.; Kothari, S., Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 2011, 15 (3), 1513-1524.
DOI: 10.1016/j.rser.2010.11.037
Google Scholar
[4]
El-Sharkawi, M. A. In Integration of renewable energy in electrical engineering curriculum, 2009 IEEE Power & Energy Society General Meeting, IEEE: 2009; pp.1-4.
DOI: 10.1109/pes.2009.5275944
Google Scholar
[5]
Gautschi, G., Piezoelectric sensors. In Piezoelectric Sensorics, Springer: 2002; pp.73-91.
DOI: 10.1007/978-3-662-04732-3_5
Google Scholar
[6]
Liao, W.-Q.; Zhao, D.; Tang, Y.-Y.; Zhang, Y.; Li, P.-F.; Shi, P.-P.; Chen, X.-G.; You, Y.-M.; Xiong, R.-G., A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science 2019, 363 (6432), 1206-1210.
DOI: 10.1126/science.aav3057
Google Scholar
[7]
Hwang, G.T.; Byun, M.; Jeong, C.K.; Lee, K.J., Flexible piezoelectric thin‐film energy harvesters and nanosensors for biomedical applications. Advanced healthcare materials 2015, 4 (5), 646-658.
DOI: 10.1002/adhm.201400642
Google Scholar
[8]
Lee, M.; Chen, C. Y.; Wang, S.; Cha, S. N.; Park, Y. J.; Kim, J. M.; Chou, L. J.; Wang, Z. L., A hybrid piezoelectric structure for wearable nanogenerators. Advanced Materials 2012, 24 (13), 1759-1764.
DOI: 10.1002/adma.201200150
Google Scholar
[9]
Hadimani, R. L.; Bayramol, D. V.; Sion, N.; Shah, T.; Qian, L.; Shi, S.; Siores, E., Continuous production of piezoelectric PVDF fibre for e-textile applications. Smart Materials and structures 2013, 22 (7), 075017.
DOI: 10.1088/0964-1726/22/7/075017
Google Scholar
[10]
Voiculescu, I.; Nordin, A. N., Acoustic wave based MEMS devices for biosensing applications. Biosensors and bioelectronics 2012, 33 (1), 1-9.
DOI: 10.1016/j.bios.2011.12.041
Google Scholar
[11]
Vellekoop, M. J., Acoustic wave sensors and their technology. Ultrasonics 1998, 36 (1-5), 7-14.
Google Scholar
[12]
McMillen, K. A.; McAnulty, D. E., Piezoresistive sensors and applications. Google Patents: (2019).
Google Scholar
[13]
Sauer, H.; Flaschen, S.; Hoesterey, D., Piezoresistance and piezocapacitance effects in barium strontium titanate ceramics. Journal of the American Ceramic Society 1959, 42 (8), 363-366.
DOI: 10.1111/j.1151-2916.1959.tb13593.x
Google Scholar
[14]
Narayanaswamy, R.; Wolfbeis, O. S., Optical sensors: industrial environmental and diagnostic applications. Springer Science & Business Media: 2013; Vol. 1.
Google Scholar
[15]
Karaseva, N. A.; Pluhar, B.; Beliaeva, E. A.; Ermolaeva, T. N.; Mizaikoff, B., Synthesis and application of molecularly imprinted polymers for trypsin piezoelectric sensors. Sensors and Actuators B: Chemical 2019, 280, 272-279.
DOI: 10.1016/j.snb.2018.10.022
Google Scholar
[16]
Shintaku, H.; Nakagawa, T.; Kitagawa, D.; Tanujaya, H.; Kawano, S.; Ito, J., Development of piezoelectric acoustic sensor with frequency selectivity for artificial cochlea. Sensors and Actuators A: Physical 2010, 158 (2), 183-192.
DOI: 10.1016/j.sna.2009.12.021
Google Scholar
[17]
Eddiai, A.; Meddad, M.; Farhan, R.; Mazroui, M.; Rguiti, M.; Guyomar, D., Using PVDF piezoelectric polymers to maximize power harvested by mechanical structure. Superlattices and Microstructures 2019, 127, 20-26.
DOI: 10.1016/j.spmi.2018.03.044
Google Scholar
[18]
Kweon, O.Y.; Lee, S.J.; Oh, J.H., Wearable high-performance pressure sensors based on three- dimensional electrospun conductive nanofibers. NPG Asia Materials 2018, 10 (6), 540.
DOI: 10.1038/s41427-018-0041-6
Google Scholar
[19]
Hosoda, K.; Tada, Y.; Asada, M., Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robotics and Autonomous Systems 2006, 54 (2), 104-109.
DOI: 10.1016/j.robot.2005.09.019
Google Scholar
[20]
Garain, S.; Jana, S.; Sinha, T. K.; Mandal, D., Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS applied materials & interfaces 2016, 8 (7), 4532-4540.
DOI: 10.1021/acsami.5b11356
Google Scholar