Elastic Piezoelectric Nanofibers Mats for Acoustic Energy Harvesting

Article Preview

Abstract:

One of the traditional clean-energy harvesting solutions is through transducing different mechanical stresses into electrical energy. Generally, the acoustic-to-electric energy conversion of still needs more research investigations to be applicable. In our work, we are targeting to fabricate elastic nanofibers mats via electrospinning method to be used for acoustic harvesting/sensing applications. The targeted mechanically-elastic nanocomposite includes polyvinylidene fluoride (PVDF), which is one of the most famous organic piezo materials, with blended thermoplastic polyurethane (TPU). As TPU supports higher mechanical allowed breaking strain. Then, the synthesized mat has been used as a target for mechanical stresses with resulted piezosensitivity of 667±220 mV/N. Then, the nanofibers mat has been targeted against acoustic signals with different amplitude and frequencies. It has been observed that the synthesized mats can detect or harvest acoustic signals and convert them into output electric voltage. According to acoustic sound input, the synthesized electrospun nanofibers detect output voltage up to 300 mV with increased input audible amplitude and frequency up to 6 kHz, where the harvested voltage has a saturation behaviour beyond that audible frequency. That can open the track for using such nanocomposites in energy harvesting applications from disposable facemasks, filters, and music/noise in different opened and closed areas.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1075)

Pages:

19-25

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dresselhaus, M.; Thomas, I., Alternative energy technologies. Nature 2001, 414 (6861), 332.

Google Scholar

[2] Boyle, G., Renewable energy. Renewable Energy, by Edited by Godfrey Boyle, p.456. Oxford University Press, May 2004. ISBN-10: 0199261784. ISBN-13: 9780199261789 2004, 456.

Google Scholar

[3] Panwar, N.; Kaushik, S.; Kothari, S., Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 2011, 15 (3), 1513-1524.

DOI: 10.1016/j.rser.2010.11.037

Google Scholar

[4] El-Sharkawi, M. A. In Integration of renewable energy in electrical engineering curriculum, 2009 IEEE Power & Energy Society General Meeting, IEEE: 2009; pp.1-4.

DOI: 10.1109/pes.2009.5275944

Google Scholar

[5] Gautschi, G., Piezoelectric sensors. In Piezoelectric Sensorics, Springer: 2002; pp.73-91.

DOI: 10.1007/978-3-662-04732-3_5

Google Scholar

[6] Liao, W.-Q.; Zhao, D.; Tang, Y.-Y.; Zhang, Y.; Li, P.-F.; Shi, P.-P.; Chen, X.-G.; You, Y.-M.; Xiong, R.-G., A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science 2019, 363 (6432), 1206-1210.

DOI: 10.1126/science.aav3057

Google Scholar

[7] Hwang, G.T.; Byun, M.; Jeong, C.K.; Lee, K.J., Flexible piezoelectric thin‐film energy harvesters and nanosensors for biomedical applications. Advanced healthcare materials 2015, 4 (5), 646-658.

DOI: 10.1002/adhm.201400642

Google Scholar

[8] Lee, M.; Chen, C. Y.; Wang, S.; Cha, S. N.; Park, Y. J.; Kim, J. M.; Chou, L. J.; Wang, Z. L., A hybrid piezoelectric structure for wearable nanogenerators. Advanced Materials 2012, 24 (13), 1759-1764.

DOI: 10.1002/adma.201200150

Google Scholar

[9] Hadimani, R. L.; Bayramol, D. V.; Sion, N.; Shah, T.; Qian, L.; Shi, S.; Siores, E., Continuous production of piezoelectric PVDF fibre for e-textile applications. Smart Materials and structures 2013, 22 (7), 075017.

DOI: 10.1088/0964-1726/22/7/075017

Google Scholar

[10] Voiculescu, I.; Nordin, A. N., Acoustic wave based MEMS devices for biosensing applications. Biosensors and bioelectronics 2012, 33 (1), 1-9.

DOI: 10.1016/j.bios.2011.12.041

Google Scholar

[11] Vellekoop, M. J., Acoustic wave sensors and their technology. Ultrasonics 1998, 36 (1-5), 7-14.

Google Scholar

[12] McMillen, K. A.; McAnulty, D. E., Piezoresistive sensors and applications. Google Patents: (2019).

Google Scholar

[13] Sauer, H.; Flaschen, S.; Hoesterey, D., Piezoresistance and piezocapacitance effects in barium strontium titanate ceramics. Journal of the American Ceramic Society 1959, 42 (8), 363-366.

DOI: 10.1111/j.1151-2916.1959.tb13593.x

Google Scholar

[14] Narayanaswamy, R.; Wolfbeis, O. S., Optical sensors: industrial environmental and diagnostic applications. Springer Science & Business Media: 2013; Vol. 1.

Google Scholar

[15] Karaseva, N. A.; Pluhar, B.; Beliaeva, E. A.; Ermolaeva, T. N.; Mizaikoff, B., Synthesis and application of molecularly imprinted polymers for trypsin piezoelectric sensors. Sensors and Actuators B: Chemical 2019, 280, 272-279.

DOI: 10.1016/j.snb.2018.10.022

Google Scholar

[16] Shintaku, H.; Nakagawa, T.; Kitagawa, D.; Tanujaya, H.; Kawano, S.; Ito, J., Development of piezoelectric acoustic sensor with frequency selectivity for artificial cochlea. Sensors and Actuators A: Physical 2010, 158 (2), 183-192.

DOI: 10.1016/j.sna.2009.12.021

Google Scholar

[17] Eddiai, A.; Meddad, M.; Farhan, R.; Mazroui, M.; Rguiti, M.; Guyomar, D., Using PVDF piezoelectric polymers to maximize power harvested by mechanical structure. Superlattices and Microstructures 2019, 127, 20-26.

DOI: 10.1016/j.spmi.2018.03.044

Google Scholar

[18] Kweon, O.Y.; Lee, S.J.; Oh, J.H., Wearable high-performance pressure sensors based on three- dimensional electrospun conductive nanofibers. NPG Asia Materials 2018, 10 (6), 540.

DOI: 10.1038/s41427-018-0041-6

Google Scholar

[19] Hosoda, K.; Tada, Y.; Asada, M., Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robotics and Autonomous Systems 2006, 54 (2), 104-109.

DOI: 10.1016/j.robot.2005.09.019

Google Scholar

[20] Garain, S.; Jana, S.; Sinha, T. K.; Mandal, D., Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS applied materials & interfaces 2016, 8 (7), 4532-4540.

DOI: 10.1021/acsami.5b11356

Google Scholar