Boriding Treatment of Low Alloy Steels: Effect of Holding Time and Temperature

Article Preview

Abstract:

Boriding is a thermochemical treatment that can be applied to improve the mechanical and chemical properties of steels by surface modification while stilling adequate substrate properties. This kind of treatment is widely used to protect the degradation of the mechanical parts’ surface against wear. The boride atoms introduced into the steel can produce a hard metallic compound formed by diffusion and precipitation. The present study has been conducted in order to obtain an iron borides layer on two types of steel substrates 16NC6 and 20MC5 by using a powder consisting of B4C, NaBF4 and, SiC. The solid boriding treatment was carried out in an electric furnace heated to 950°C for three holding times of 2h, 4h and, 6h. The present research work focuses an the effect studying of holding time as a parameter on the thickness, structure, morphology, and hardness of layers obtained on low carbon steels by the case boriding. As confirmed by structure and microstructure characterization, the hard boride layers produced form two phases of FeB and Fe2B.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1078)

Pages:

103-110

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. A. Dearnley and T. Bell; Engineering the surface with boron based material; Surface Engineering 1985 Vol. 1 No.3 203-218.

Google Scholar

[2] O. Allaoui, N. Bouaouadja, G. Saindernan; Characterization of boronized layers on a XC38 steel. Surf. Coat. Tech. 2006, 201, 3475–3482.

DOI: 10.1016/j.surfcoat.2006.07.238

Google Scholar

[3] M. Keddam, S.M. Chentouf, A diffusion model for describing the bilayer growth FeB/Fe2B during the iron pow-der-pack boriding. Appl. Surf. Sci. 2005, 252, 393–399.

DOI: 10.1016/j.apsusc.2005.01.016

Google Scholar

[4] R. Boubaayaa, Y. Benarioua, O. Allaouia and M. Djendela; Production of chromium boride layers on carbon steel with conversion treatment: chromium deposition + diffusion annealing ; Acta Physica Polonica A (2017) Vol. 132 No. 3 541-543.

DOI: 10.12693/aphyspola.132.541

Google Scholar

[5] M. Keddam, M Ortiz-Domíguez, I. Campos-Silva, J. Martínez-Trinidad; A simple model for the growth kinetics of Fe2B iron boride on pure iron substrate. Appl. Surf. Sci. 2010, 256, 3128– 3132.

DOI: 10.1016/j.apsusc.2009.11.085

Google Scholar

[6] V. Jain, G. Sundararajan ; Influence of the pack thickness of the boronizing mixture on the boriding of steel. Surf. Coat. Tech. 2002, 149, 21–26.

DOI: 10.1016/s0257-8972(01)01385-8

Google Scholar

[7] K Rayane, O Allaoui, A Allaoui ; Effect of diffusion annealing on borides layers produced on XC38 steel ; Acta Physica Polonica A 2017, Vol. 132 N.3 , 521-523.

DOI: 10.12693/aphyspola.132.521

Google Scholar

[8] C.I. VillaVelázquez-Mendoza, J.L. Rodríguez-Mendoza; Effect of substrate roughness time and temperature on the processing of iron boride coatings: experimental and statistical approaches ; Int. J. Surface Science and Engineering, Vol. 8, No. 1, 2014 71-91.

DOI: 10.1504/ijsurfse.2014.059315

Google Scholar

[9] D. Bricín, A. Kříž ; Influence of the Boriding Process on the Properties and the Structure of S265 Steel and X6CrNiTi18-10 Steel; Manufacturing Technology 2021, Vol. 21, No. 1 37-44.

DOI: 10.21062/mft.2021.003

Google Scholar

[10] P.A Ruiz-Trabolsi, J.C Velázquez, C. Orozco-Álvarez, R. Carrera-Espinoza, J.A. Yescas Hernández, E.González-Arévalo, E. Hernández-Sánchez ; Kinetics of the boride layers obtained on AISI 1018 steel by considering the Amount of matter involved. Coatings 2021, 11, 259. 1-17.

DOI: 10.3390/coatings11020259

Google Scholar

[11] M. Tabur M. Izciler, F. Gul, I. Karacan ; Abrasive wear behavior of boronized AISI 8620 steel. Wear 2009 , 266, 1106–1112.

DOI: 10.1016/j.wear.2009.03.006

Google Scholar

[12] S. Sen, U. Sen, C. Bindal ; The growth kinetics of borides formed on boronized AISI 4140 steel. Vacuum 2005, 77, 195–202.

DOI: 10.1016/j.vacuum.2004.09.005

Google Scholar

[13] L. G. Yu, X. J. Chen, K. A. Khor, G. Sundararajan ; FeB/Fe2B phase 53, 2361–2368.

Google Scholar

[14] J. H. Yoon, Y. K. Jee, S. Y. Lee ; Plasma paste boronizing treatment of the stainless steel AISI 304 ; Surf Coat Technol. 1999, 112, 71–75.

DOI: 10.1016/s0257-8972(98)00743-9

Google Scholar

[15] I. Campos, G. Ramirez, U. Figuero, J. Martinez, O. Morales ; Evaluation of boron mobility on the phases FeB, Fe2B and diffusion zone in AISI 1045 and M2 steels. Appl. Surf. Sci. 2007, 253, 3469–3475.

DOI: 10.1016/j.apsusc.2006.07.046

Google Scholar

[16] G. Kartal, O. L. Eryilmaz, G. Krumdick, A. Erdemir, S. Timur Kinetics of electrochemical boriding of low carbon steel. Appl. Surf. Sci. ; 2011, 257, 6928–6934.

DOI: 10.1016/j.apsusc.2011.03.034

Google Scholar

[17] I. Campos-Silva, M. Ortiz-Domínguez, O. BravoBárcenas, M.A. Doñu-Ruiz, D. Bravo- Bárcenas, C. Tapia-Quintero, M.Y. Jiménez-Reyes, Surf. Coat. Technol. 205, 403 (2010).

DOI: 10.1016/j.surfcoat.2010.06.068

Google Scholar

[18] I. Campos-Silva, M. Ortiz-Domínguez, C. TapiaQuintero, G. Rodríguez-Castro, M.Y. Jiménez-Reyes, E. Chávez-Gutiérrez, J. Mater. Eng. Perform. 21, 1714 (2012).

DOI: 10.1007/s11665-011-0088-9

Google Scholar

[19] M. Kulka, N. Makuch, A. Pertek, L. Maldzinski, J. Solid State Chem. 199, 196 (2013).

Google Scholar

[20] E. Chavez-Gutiérrez, M.Sc. Thesis, IPN, Mexico 2012 (in Spanish).

Google Scholar

[21] M. Keddama, Z. Nait Abdellaha, M. Kulka, R. Chegroune; Determination of the Diffusion Coefficients of Boron in the FeB and Fe2B Layers Formed on AISI D2 Steel; Acta Physica Polonica A Vol. 128 (2015) 740-746.

DOI: 10.12693/aphyspola.128.740

Google Scholar

[22] I. Gunes; Kinetics of borided gear steels; Sādhanā 2013, Vol. 38, Part 3, 527–541.

DOI: 10.1007/s12046-013-0138-0

Google Scholar