[1]
J.E. Sundgren, B.E. Jacobson and M.K. Hibbs; Microstructure of nitride and carbide coatings prepared by physical vapor deposition methods Z. Met. kd. 1984; 75:855-861.
DOI: 10.1515/ijmr-1984-751106
Google Scholar
[2]
M. Pancielejko, W. Precht and A. Czyżniewski; Tribological properties of PVD titanium carbides. Vacuum; 53 (1999) 57-60.
DOI: 10.1016/s0042-207x(98)00391-1
Google Scholar
[3]
Y. Benarioua, B. Wendler and D. Chicot; Study on conversion treatment of thin titanium layer deposited onto carbon steel: Application of physical and mechanical investigation; Newest Updates in Physical Science Research Vol. 14 (2021) 154-165.
DOI: 10.9734/bpi/nupsr/v14/10327d
Google Scholar
[4]
Y. Benarioua, J. Lesage, E. Bemporad and D. Chicot; Titanium carbide films obtained by conversion of sputtered titanium on high carbon stee; Coat. Technol. 200 (2006) 5447-5454.
DOI: 10.1016/j.surfcoat.2005.07.066
Google Scholar
[5]
E.K. Storms, The Refractory Carbide, Academic Press, New York, (1967).
Google Scholar
[6]
L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, (1971).
Google Scholar
[7]
T. Arai, 10th ed., Metals Handbook, vol. 4, ASM, USA, 1991, p.448.
Google Scholar
[8]
A. Kumar, H.L. Chan and J. S. Kapat, Deposition and characterization of titanium carbide coatings using laser ablation method, Appl. Surf. Sci. 127-129 (1998) 549–552.
DOI: 10.1016/s0169-4332(97)00703-4
Google Scholar
[9]
X. Li, Z. Dong, A. Westwood, A. Brown, S. Zhang, R. Brydson and B. Rand, Preparation of a titanium carbide coating on carbon fibre using a molten salt method, Carbon 46 (2008) 305–309.
DOI: 10.1016/j.carbon.2007.11.020
Google Scholar
[10]
V.S. Protsenko, L.S. Bobrova, D.E. Golubtsov, S.A. Korniy, and F.I. Danilov; Electrolytic Deposition of Hard ChromiumCoatings from Electrolyte Based on Deep Eutectic Solvent; Russian Journal of Applied Chemistry 91(7) (2018) 1106-1111.
DOI: 10.1134/s1070427218070066
Google Scholar
[11]
H. Khani and J. F. Brennecke; Hard chromium composite electroplating on high strength stainless steel from a Cr(III)-ionic liquid solution ; Electrochemistry Communications, 107 (2019) 106537.
DOI: 10.1016/j.elecom.2019.106537
Google Scholar
[12]
S. Sen; A study on kinetics of CrxC - coated high-chromium steel by thermo-reactive dif Fusion technique ; Vacuum 79 (2005) 63–70.
DOI: 10.1016/j.vacuum.2005.01.009
Google Scholar
[13]
M. R. Najari, S. A. Sajjadi , O. Ganji; Microstructural evolution and wear properties of chromium carbide coating formed by thermo-reactive diffusion (TRD) process on a cold- work tool steel; Results in Surfaces and Interfaces Vol. 8 (2022), 100059.
DOI: 10.1016/j.rsurfi.2022.100059
Google Scholar
[14]
A. Günen, M. Kalkandelen, M. S. Gök, E. Kanca, B. Kurt, M. S. Karakaş, İ. H.Karahan, M. Çetin; Characteristics and high temperature wear behavior of chrome vanadium carbide composite coatings produced by thermo-reactive diffusion; Surface and CoatingsTechnology; Vol. 402, N°25 (2020), 126402.
DOI: 10.1016/j.surfcoat.2020.126402
Google Scholar
[15]
J. Li and C. Ding; Improvement in the properties of plasma-sprayed chromium carbide coatings using nickel-clad powders; Surface and Coatings Technology 130 (2000) 15-19.
DOI: 10.1016/s0257-8972(00)00678-2
Google Scholar
[16]
Z. Wei, C. Zhu, L. Zhou, L. Wang; The Enhancement Effect ofSalt Bath Chromizing for P20 Steel; Coatings 11 (2021) 27.
DOI: 10.3390/coatings11010027
Google Scholar
[17]
B. Bryskin, A. Kostylev, Y. Pokrovskiy, , and A. Lumpov, , "CVD Technology for Preparing Wear-Resistive Chromium Carbide Coatings of Engine Components,SAE Int. J. Mater. Manf. 7 (3) (2014) 630-632.
DOI: 10.4271/2014-01-1020
Google Scholar
[18]
B. Eastwood, S. Harmer, J. Smith, A. Kempster; Characteristics of Chromium Carbide Layers Produced on Martensitic Stainless Steel Using Different Chemical Vapour Deposition (CVD) Techniques; Materials Science Forum, Vols 102-104 (1992) 543-552.
DOI: 10.4028/www.scientific.net/msf.102-104.543
Google Scholar
[19]
A. Zalar, J. Kovac, B. Pracek, P. Panjan and M. Ceh, Ion sputtering rates of C, CrxCy, and Cr at different Ar+ ionincidence angles, Vacuum 82 (2008) 116–120.
DOI: 10.1016/j.vacuum.2007.07.015
Google Scholar
[20]
M. Richert, A. Mazurkiewicz and J. Smolik; Chromium carbide coatings obtained by the hybrid PVD methods; Journal of Achievements of Materials and Manufacturing Engineering 43(2010) 145-152.
Google Scholar
[21]
Y. Benarioua, B. Wendler and D. Chicot; Conversion treatment of thin titanium layer deposited on carbon steel; IOP Conf. Series: Journal of Physics: Conf. Series 1033 (2018) 012010.
DOI: 10.1088/1742-6596/1033/1/012010
Google Scholar
[22]
Y. Benarioua R. Boubaaya, J. Lesage and D. Chicot; Annealing study of thin chromium layers on cemented steel substrates; Surf. Coat. Technol.; 227(2013) 65-69.
DOI: 10.1016/j.surfcoat.2013.04.006
Google Scholar
[23]
K. Wieczerzac, P. Bala, M. Stepien , G. Cios, T. Koziel The characterisation of cast Fe- Cr–C alloy, Archives of metallurgy and materials ; Vol 60 Issue 2(2015) ) 779 –.
Google Scholar
[24]
K. Nygren, M. Samuelsson, A. Flink, H. Ljungcrantz, Å.K. Rudolphi, U. Jansson Growth and characterization of chromium carbide films deposited by high rate reactive magnetron sputtering for electrical contact applications ; Vol. 260, N° 15 (2014) 326-334.
DOI: 10.1016/j.surfcoat.2014.06.069
Google Scholar
[25]
M. Detroye, F. Renies, C. Buess-Herman, J. Vereecken; Synthesis and characterization of chromium carbides, Applied Surface Science 120 (1997) 85-93.
DOI: 10.1016/s0169-4332(97)00228-6
Google Scholar
[26]
X. Su, S. Zhao; Formation of chromium carbide coatings on HT250 steel by thermal diffusion processes in fluoride molten saltbath ; Vacuum 155 (2018) 219–223.
DOI: 10.1016/j.vacuum.2018.06.015
Google Scholar
[27]
H.R.K. Zarchi, M. Jalaly, M. Soltanieh and H. Mehrjoo; Comparison of the Activation Energies of the Formation of Chromium Carbide Coating on Carburized and Uncarburized AISI 1020 ; Steel Research International; 80 (11) (2009) 859 – 864.
Google Scholar
[28]
G. P. Samsonov and L. A. Solonnikova, Phy. Met. Metallogr.; 5 (3) (1957) 177.
Google Scholar
[29]
K. Hirota, K. Mitani, M.Yoshinaka, O. Yamaguchi; Simultaneous synthesis and consolidation of chromium carbides (Cr3C2,Cr7C3 and Cr23C6) by pulsed electric current pressure sintering; Mat. Sci. Eng.; 399 (2005) 154.
DOI: 10.1016/j.msea.2005.02.062
Google Scholar