[1]
M. Katinić, D. Kozak, I. Gelo, and D. Damjanović, Corrosion fatigue failure of steam turbine moving blades: A case study,, Eng Fail Anal, 106 (2019) 104-136.
DOI: 10.1016/j.engfailanal.2019.08.002
Google Scholar
[2]
W.-Z. Wang, F.-Z. Xuan, K.-L. Zhu, and S.-T. Tu, Failure analysis of the final stage blade in steam turbine,, Eng Fail Anal, 14, 4 (2007) 632–641.
DOI: 10.1016/j.engfailanal.2006.03.004
Google Scholar
[3]
J. A. Rodríguez et al., Fatigue of steam turbine blades at resonance conditions,, Eng Fail Anal, 104 (2019) 39–46.
Google Scholar
[4]
J. Yao, Q. Zhang, F. Kong, and Q. Ding, Laser hardening techniques on steam turbine blade and application,, Phys Procedia, 5 (2010) 399–406.
DOI: 10.1016/j.phpro.2010.08.161
Google Scholar
[5]
N. Hutasoit, V. Luzin, A. Blicblau, W. Yan, M. Brandt, and R. Cottam, Fatigue life of laser clad hardfacing alloys on AISI 4130 steel under rotary bending fatigue test,, Int J Fatigue, 72 (2015) 42–52.
DOI: 10.1016/j.ijfatigue.2014.11.001
Google Scholar
[6]
Z. A. Abdulwahab, S. A. Ajeel, and S. I. Jafar, Influence Of Laser Cladding on Behavior of Fatigue and Fatigue Corrosion,, in IOP Conference Series: Earth and Environmental Science, 961, 1 (2022) 12035.
DOI: 10.1088/1755-1315/961/1/012035
Google Scholar
[7]
Y. P. Kathuria, Some aspects of laser surface cladding in the turbine industry,, Surf Coatings Technol, 132, 2–3 (2000) 262–269.
DOI: 10.1016/s0257-8972(00)00735-0
Google Scholar
[8]
S. Sun, Y. Durandet, and M. Brandt, Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel,, Surf Coatings Technol, 194, 2–3 (2005) 225–231.
DOI: 10.1016/j.surfcoat.2004.03.058
Google Scholar
[9]
S. Da Sun et al., Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel,, Mater Sci Eng A, 606 (2014) 46–57.
DOI: 10.1016/j.msea.2014.03.077
Google Scholar
[10]
L. K. Bhagi, P. Gupta, and V. Rastogi, A brief review on failure of turbine blades,, Proc STME-2013 Smart Technol Mech Eng Delhi, (2013) 25–26.
Google Scholar
[11]
A. Nair and A. Khan, Studies on effect of laser processed stellite 6 material and its electrochemical behavior,, Optik (Stuttg), 220 (2020) 165221.
DOI: 10.1016/j.ijleo.2020.165221
Google Scholar
[12]
F. M. Ghaini, M. J. Hamedi, M. J. Torkamany, and J. Sabbaghzadeh, Weld metal microstructural characteristics in pulsed Nd: YAG laser welding,, Scr Mater, 56, 11 (2007) 955–958.
DOI: 10.1016/j.scriptamat.2007.02.019
Google Scholar
[13]
M. J. Torkamany, M. J. Hamedi, F. Malek, and J. Sabbaghzadeh, The effect of process parameters on keyhole welding with a 400 W Nd: YAG pulsed laser,, J Phys D Appl Phys, 39, 21 (2006) 4563.
DOI: 10.1088/0022-3727/39/21/009
Google Scholar
[14]
X. Zhao, H. Zhang, and Y. Liu, Effect of laser surface re-melting on the fatigue crack propagation rate of 40Cr steel,, Results Phys, 12 (2019) 424–431.
DOI: 10.1016/j.rinp.2018.11.097
Google Scholar
[15]
Z. Sun, I. Annergren, D. Pan, and T. A. Mai, Effect of laser surface re-melting on the corrosion behavior of commercially pure titanium sheet,, Mater Sci Eng A, 345, 1–2 (2003) 293–300.
DOI: 10.1016/s0921-5093(02)00477-x
Google Scholar