[1]
Revie, R.W., & Uhlig, H.H.(n.d.). Corrosion and Corrosion Control An Introduction to Corrosion Science and Engineering FOURTH EDITION.
Google Scholar
[2]
Concilio, A., Antonucci, V., Auricchio, F., Lecce, L., & Sacco, E. (2021). Shape Memory Alloy Engineering: For Aerospace, Structural, and Biomedical Applications. Elsevier.
DOI: 10.1016/b978-0-12-819264-1.05001-9
Google Scholar
[3]
Dawood, N. M., & Abid Ali, A. R. (2022). Effect of Aging on Corrosion Behavior of Martensite Phase in Cu-Al-Ni Shape Memory Alloy. Key Engineering Materials, 911, 96–102.
DOI: 10.4028/p-3jm065
Google Scholar
[4]
Raheem Abid Ali, A. K., & KhuliefAl-Tai, Z. T. (2010). The Effect of Iron Addition on the Dry Sliding Wear and Corrosion Behavior of Cu Al Ni Shape Memory Alloy. In Eng. & Tech. Journal (Vol. 28, Issue 24).
Google Scholar
[5]
Saud, S. N., Hamzah, E., Abubakar, T., Bakhsheshi-Rad, H. R., & Mohammed, M. N. (2016). Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 47(10), 5242–5255.
DOI: 10.1007/s11661-016-3628-y
Google Scholar
[6]
Saud, S. N., Hamzah, E., Abubakar, T., Bakhsheshi-Rad, H. R., Zamri, M., & Tanemura, M. (2014). Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys. Journal of Materials Engineering and Performance, 23(10), 3620–3629.
DOI: 10.1007/s11665-014-1134-1
Google Scholar
[7]
Saud, S. N., Hamzah, E., Abubakar, T., Bakhsheshi-Rad, H. R., Farahany, S., Abdolahi, A., & Taheri, M. M. (2014). Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu-Al-Ni shape memory alloys. Journal of Alloys and Compounds, 612, 471–478.
DOI: 10.1016/j.jallcom.2014.05.173
Google Scholar
[8]
Ahmed Adnan, R. S., Abbass, M. K., & Jomaa, D. M. (2021). Effect of tin addition on corrosion resistance and microstructure of Cu-based shape memory alloy. Materials Today: Proceedings, 42, 2119–2124.
DOI: 10.1016/j.matpr.2020.12.295
Google Scholar
[9]
Zare, M., & Ketabchi, M. (2017). Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu–Al–Ni shape-memory alloys. Journal of Thermal Analysis and Calorimetry, 127(3), 2113–2123.
DOI: 10.1007/s10973-016-5839-2
Google Scholar
[10]
Yeung, K. W. K., Poon, R. W. Y., Liu, X. Y., Ho, J. P. Y., Chung, C. Y., Chu, P. K., Lu, W. W., Chan, D., & Cheung, K. M. C. (2005). Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys. Journal of Biomedical Materials Research - Part A, 75(2), 256–267.
DOI: 10.1002/jbm.a.30413
Google Scholar
[11]
Al-Hassani, E. S., Ali, A. H., & Hatem, S. T. (2017). Investigation of Corrosion Behavior for Copper-Based Shape Memory Alloys in different Media "Investigation of Corrosion Behavior for Copper-Based Shape Memory Alloys in different Media. In Engineering and Technology Journal (Vol. 35, Issue 6).
DOI: 10.30684/etj.35.6a.4
Google Scholar
[12]
Al-Kharafi, F. M., & Badawy, W. A. (1998). Inhibition of Corrosion of Al 6061, Aluminum, and an Aluminum-Copper Alloy in Chloride-Free Aqueous Media: Part 2 — Behavior in Basic Solutions. In CORROSION SCIENCE SECTION (Vol. 54, Issue 5).
DOI: 10.5006/1.3284865
Google Scholar
[13]
Najib, A. S. M., Saud, S. N., & Hamzah, E. (2019). Corrosion Behavior of Cu–Al–Ni–xCo Shape Memory Alloys Coupled with Low-Carbon Steel for Civil Engineering Applications. Journal of Bio- and Tribo-Corrosion, 5(2). https://doi.org/10.1007/s40735-019-0242-8.
DOI: 10.1007/s40735-019-0242-8
Google Scholar