The Influence of Thermo Mechanical Treatment on Corrosion Resistance of Cu-Al-Ni Shape Memory Alloy

Article Preview

Abstract:

In This Study that includes the thermal treatment with mechanical in compression at constant loading of 30 KN Was investigated by using the three Different temperature at (260-280-300)°C for Cu-14%Al-4.5Ni then Potentiondynamics polarization tests were applied to the Alloys with Microstructure by Scanning Electron Microscope SEM results shows an decrease in corrosion rates and increasing in corrosion resistance with the Increase of working temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1078)

Pages:

111-117

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Revie, R.W., & Uhlig, H.H.(n.d.). Corrosion and Corrosion Control An Introduction to Corrosion Science and Engineering FOURTH EDITION.

Google Scholar

[2] Concilio, A., Antonucci, V., Auricchio, F., Lecce, L., & Sacco, E. (2021). Shape Memory Alloy Engineering: For Aerospace, Structural, and Biomedical Applications. Elsevier.

DOI: 10.1016/b978-0-12-819264-1.05001-9

Google Scholar

[3] Dawood, N. M., & Abid Ali, A. R. (2022). Effect of Aging on Corrosion Behavior of Martensite Phase in Cu-Al-Ni Shape Memory Alloy. Key Engineering Materials, 911, 96–102.

DOI: 10.4028/p-3jm065

Google Scholar

[4] Raheem Abid Ali, A. K., & KhuliefAl-Tai, Z. T. (2010). The Effect of Iron Addition on the Dry Sliding Wear and Corrosion Behavior of Cu Al Ni Shape Memory Alloy. In Eng. & Tech. Journal (Vol. 28, Issue 24).

Google Scholar

[5] Saud, S. N., Hamzah, E., Abubakar, T., Bakhsheshi-Rad, H. R., & Mohammed, M. N. (2016). Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 47(10), 5242–5255.

DOI: 10.1007/s11661-016-3628-y

Google Scholar

[6] Saud, S. N., Hamzah, E., Abubakar, T., Bakhsheshi-Rad, H. R., Zamri, M., & Tanemura, M. (2014). Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys. Journal of Materials Engineering and Performance, 23(10), 3620–3629.

DOI: 10.1007/s11665-014-1134-1

Google Scholar

[7] Saud, S. N., Hamzah, E., Abubakar, T., Bakhsheshi-Rad, H. R., Farahany, S., Abdolahi, A., & Taheri, M. M. (2014). Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu-Al-Ni shape memory alloys. Journal of Alloys and Compounds, 612, 471–478.

DOI: 10.1016/j.jallcom.2014.05.173

Google Scholar

[8] Ahmed Adnan, R. S., Abbass, M. K., & Jomaa, D. M. (2021). Effect of tin addition on corrosion resistance and microstructure of Cu-based shape memory alloy. Materials Today: Proceedings, 42, 2119–2124.

DOI: 10.1016/j.matpr.2020.12.295

Google Scholar

[9] Zare, M., & Ketabchi, M. (2017). Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu–Al–Ni shape-memory alloys. Journal of Thermal Analysis and Calorimetry, 127(3), 2113–2123.

DOI: 10.1007/s10973-016-5839-2

Google Scholar

[10] Yeung, K. W. K., Poon, R. W. Y., Liu, X. Y., Ho, J. P. Y., Chung, C. Y., Chu, P. K., Lu, W. W., Chan, D., & Cheung, K. M. C. (2005). Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys. Journal of Biomedical Materials Research - Part A, 75(2), 256–267.

DOI: 10.1002/jbm.a.30413

Google Scholar

[11] Al-Hassani, E. S., Ali, A. H., & Hatem, S. T. (2017). Investigation of Corrosion Behavior for Copper-Based Shape Memory Alloys in different Media "Investigation of Corrosion Behavior for Copper-Based Shape Memory Alloys in different Media. In Engineering and Technology Journal (Vol. 35, Issue 6).

DOI: 10.30684/etj.35.6a.4

Google Scholar

[12] Al-Kharafi, F. M., & Badawy, W. A. (1998). Inhibition of Corrosion of Al 6061, Aluminum, and an Aluminum-Copper Alloy in Chloride-Free Aqueous Media: Part 2 — Behavior in Basic Solutions. In CORROSION SCIENCE SECTION (Vol. 54, Issue 5).

DOI: 10.5006/1.3284865

Google Scholar

[13] Najib, A. S. M., Saud, S. N., & Hamzah, E. (2019). Corrosion Behavior of Cu–Al–Ni–xCo Shape Memory Alloys Coupled with Low-Carbon Steel for Civil Engineering Applications. Journal of Bio- and Tribo-Corrosion, 5(2). https://doi.org/10.1007/s40735-019-0242-8.

DOI: 10.1007/s40735-019-0242-8

Google Scholar