[1]
K. M. Nampoothiri, N.R Nair. and John, R.P., An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 101(22) 2010, pp.8493-8501.
DOI: 10.1016/j.biortech.2010.05.092
Google Scholar
[2]
Auras, Rafael, Harte, Bruce, et Selke, Susan. Polylactides. A new era of biodegradable polymers for packaging application. In: Ann Tech Conf–ANTEC Conf Proc. (2005), pp.320-324.
Google Scholar
[3]
J.M. Raquez, Y. Habibi, M. Murariu, and P. Dubois, Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10-11) 2013, pp.1504-1542.
DOI: 10.1016/j.progpolymsci.2013.05.014
Google Scholar
[4]
Seo, Jung-Hwan, Han, Jinwoo, Lee, Kyung Soo, et al. Combined effects of chemical and microcellular foaming on foaming characteristics of PLA (poly lactic acid) in injection molding process. Polymer-Plastics Technology and Engineering, 51, 5(2012), pp.455-460.
DOI: 10.1080/03602559.2011.651239
Google Scholar
[5]
Solarski, Samuel, Ferreira, Manuela, Devaux, Eric, et al. Designing polylactide/clay nanocomposites for textile applications: Effect of processing conditions, spinning, and characterization. Journal of Applied Polymer Science, 109 (2) (2008), pp.841-851.
DOI: 10.1002/app.28138
Google Scholar
[6]
Liu, Shan, Shuhao Qin, Min He, Dengfeng Zhou, Qingdong Qin, and Hao Wang. Current applications of poly (lactic acid) composites in tissue engineering and drug delivery., Composites Part B: Engineering 199 (2020): 108238.
DOI: 10.1016/j.compositesb.2020.108238
Google Scholar
[7]
Li, G., Zhao, M., Xu, F., Yang, B., Li, X., Meng, X., Teng, L., Sun, F. and Li, Y., Synthesis and biological application of polylactic acid. Molecules, 25(21) 2020, p.5023.
DOI: 10.3390/molecules25215023
Google Scholar
[8]
Lunt, James, and Andrew L. Shafer. Polylactic acid polymers from com. Applications in the textiles industry., Journal of Industrial textiles 29(3) (2000): pp.191-205.
DOI: 10.1177/152808370002900304
Google Scholar
[9]
Sawalha, Hassan, Karin Schroën, and Remko Boom. Mechanical properties and porosity of polylactide for biomedical applications., Journal of applied polymer science 107.1 (2008): pp.82-93.
DOI: 10.1002/app.27116
Google Scholar
[10]
Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K.J.M.S., Functionally graded materials for biomedical applications. Materials Science and Engineering: A, 362(1-2) (2003), pp.40-60.
DOI: 10.1016/s0921-5093(03)00580-x
Google Scholar
[11]
Simmons, H., Tiwary, P., Colwell, J. E., & Kontopoulou, M. (2019). Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polymer Degradation and Stability, 166, 248-257.
DOI: 10.1016/j.polymdegradstab.2019.06.001
Google Scholar
[12]
Krishnamachari, P., Zhang, J., Lou, J., Yan, J. and Uitenham, L., Biodegradable poly (lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. International Journal of Polymer Analysis and Characterization, 14(4) (2009), pp.336-350.
DOI: 10.1080/10236660902871843
Google Scholar
[13]
Huda, M.S., Drzal, L.T., Misra, M., Mohanty, A.K., Williams, K. and Mielewski, D.F., A study on biocomposites from recycled newspaper fiber and poly (lactic acid). Industrial & engineering chemistry research, 44(15) (2005), pp.5593-5601.
DOI: 10.1021/ie0488849
Google Scholar
[14]
Domínguez-Robles, J., Martin, N.K., Fong, M.L., Stewart, S.A., Irwin, N.J., Rial-Hermida, M.I., Donnelly, R.F. and Larrañeta, E., Antioxidant PLA composites containing lignin for 3D printing applications: a potential material for healthcare applications. Pharmaceutics, 11(4) (2019), p.165.
DOI: 10.3390/pharmaceutics11040165
Google Scholar
[15]
Jiang, S. and Liao, G., Synthesis and characterization of biocompatible poly (ethylene glycol)-b-poly (L-lactide) and study on their electrospun scaffolds. Polymer-Plastics Technology and Engineering, 51(12) (2012), pp.1237-1244.
DOI: 10.1080/03602559.2012.698686
Google Scholar
[16]
Perego, G., Cella, G.D. and Bastioli, C., Effect of molecular weight and crystallinity on poly (lactic acid) mechanical properties. Journal of Applied Polymer Science, 59(1) (1996), pp.37-43.
DOI: 10.1002/(sici)1097-4628(19960103)59:1<37::aid-app6>3.0.co;2-n
Google Scholar
[17]
Ghosh, S., Viana, J.C., Reis, R.L. and Mano, J.F., Effect of processing conditions on morphology and mechanical properties of injection‐molded poly (l‐lactic acid). Polymer Engineering & Science, 47(7) (2007), pp.1141-1147.
DOI: 10.1002/pen.20799
Google Scholar
[18]
Kokturk, G.; Serhatkulu, T.F.; Cakmak, M.; Piskin, E. Evolution of phase behavior and orientation in uniaxially deformed polylactic acid films. Polym. Eng. Sci. 42 (8) (2002), pp.1619-1628.
DOI: 10.1002/pen.11057
Google Scholar
[19]
Ikada, Y. and Tsuji, H., Biodegradable polyesters for medical and ecological applications. Macromolecular rapid communications, 21(3) (2000), pp.117-132.
DOI: 10.1002/(sici)1521-3927(20000201)21:3<117::aid-marc117>3.0.co;2-x
Google Scholar
[20]
Yuzay, Isinay E., Rafael Auras, and Susan Selke. Poly (lactic acid)/Aluminum Oxide Composites Fabricated by Sol‐Gel and Melt Compounding Processes., Macromolecular Materials and Engineering 295.3 (2010), pp.283-292.
DOI: 10.1002/mame.200900223
Google Scholar
[21]
Simmons, H., Tiwary, P., Colwell, J. E., & Kontopoulou, M., Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polymer Degradation and Stability, 166 (2019), pp.248-257.
DOI: 10.1016/j.polymdegradstab.2019.06.001
Google Scholar
[22]
Wang, Yaming, et al. Orientation and structural development of semicrystalline poly (lactic acid) under uniaxial drawing assessed by infrared spectroscopy and X-ray diffraction., Polymer Testing 41 (2015), pp.163-171.
DOI: 10.1016/j.polymertesting.2014.11.010
Google Scholar
[23]
Singh, Shikha, et al. Orientation of Polylactic Acid–Chitin Nanocomposite Films via Combined Calendering and Uniaxial Drawing: Effect on Structure, Mechanical, and Thermal Properties., Nanomaterials 11.12 (2021), p.3308.
DOI: 10.3390/nano11123308
Google Scholar
[24]
Pilić, Branka M., et al. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid) polymer matrix., Hemijska industrija 70.1 (2016), pp.73-80.
DOI: 10.2298/hemind150107015p
Google Scholar
[25]
Kaseem, Mosab, et al. A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites., Polymers 13.18 (2021), p.3036.
DOI: 10.3390/polym13183036
Google Scholar
[26]
Li, Yi, et al. Thermal and mechanical properties of stereocomplex polylactide enhanced by nanosilica., Colloid and Polymer Science (2021), pp.1-12.
Google Scholar
[27]
Yuzay, Isinay E., Rafael Auras, and Susan Selke. Poly (lactic acid)/Aluminum Oxide Composites Fabricated by Sol‐Gel and Melt Compounding Processes., Macromolecular Materials and Engineering 295.3 (2010), pp.283-292.
DOI: 10.1002/mame.200900223
Google Scholar
[28]
Zhang, Y., Deng, B. Y., and Liu., Q. S. Rheology and crystallisation of PLA containing PLA-grafted nanosilica., Plastics, Rubber and Composites 43.9 (2014): pp.309-314.
DOI: 10.1179/1743289814y.0000000099
Google Scholar
[29]
Wu, J. H., Yen, M. S., Kuo, M. C., & Chen, B. H. Physical properties and crystallization behavior of silica particulates reinforced poly (lactic acid) composites. Materials Chemistry and Physics, 142(2-3) (2013), pp.726-733.
DOI: 10.1016/j.matchemphys.2013.08.031
Google Scholar
[30]
Ali, N. Abbas, I. Atta AL-Ajaj, and FT Mohammed Noori. Effect of nano SiO2 on some mechanical properties of biodegradable polylactic acid., Int. J. Mech. Eng. Technol 5.2 (2014), pp.1-7.
Google Scholar
[31]
Bouamer, A., Benrekaa, N., Younes, A., & Amar, H., Characterization of the Polylactic acid stretched uniaxial and annealed by Raman spectrometry and Differential scanning calorimetry. In IOP Conference Series: Materials Science and Engineering, IOP Publishing. 461 (1) (2018), p.012006.
DOI: 10.1088/1757-899x/461/1/012006
Google Scholar
[32]
Łopusiewicz, Ł., Jędra, F., & Mizielińska, M., New poly (lactic acid) active packaging composite films incorporated with fungal melanin. Polymers, 10(4) (2018), p.386.
DOI: 10.3390/polym10040386
Google Scholar
[33]
Vano‐Herrera, K., Misiun, A., & Vogt, C., Preparation and characterization of poly lactic acid)/poly (methyl methacrylate) blend tablets for application in quantitative analysis by micro Raman spectroscopy. Journal of Raman spectroscopy, 46(2) (2015), pp.273-279.
DOI: 10.1002/jrs.4603
Google Scholar
[34]
Smith, P. B., Leugers, A., Kang, S., Hsu, S. L., & Yang, X., An analysis of the correlation between structural anisotropy and dimensional stability for drawn poly (lactic acid) films. Journal of applied polymer science, 82(10) (2001), pp.2497-2505.
DOI: 10.1002/app.2100
Google Scholar
[35]
Milan Vuksic, Irena Zmak, Lidija Curkovic, Danko Coric, Petra Jenus, Andraz Kocjan, Evaluating recycling potential of waste alumina powder for ceramics production using response surface methodology, Journal of Materials Research and Technology 11 (2021), pp.866-874.
DOI: 10.1016/j.jmrt.2021.01.064
Google Scholar
[36]
Patrick A Folkes, Patrick Taylor, Charles Rong, Barbara Nichols, Harry Hier, and Mikella Farrell, Raman Scattering from Tin, Sensors and Electron Devices Directorate, US Army Research Laboratory, ARL-TR-7448, SEP (2015).
Google Scholar
[37]
Beirong Ye, Chao Jia, Ziwei Li, Lei Li, Qiang Zhao, Jinshu Wang, Hui Wu, Solution-blow spun PLA/SiO2 nanofiber membranes toward high efficiency oil/water separation, Journal Appl. Polym. Sci. 2020; e49103, pp.1-9.
DOI: 10.1002/app.49103
Google Scholar
[38]
Bouamer A., Benrekaa N., Younes A., Characterization of poly lactic acid ceramic composites synthesized by casting method, Materials Today: Proceedings 42 (part 5) (2021), P 2959-2962.
DOI: 10.1016/j.matpr.2020.12.803
Google Scholar
[39]
Askadskii, A., Popova, M., Matseevich, T., & Kurskaya, E., The Influence of the Degree of Crystallinity on the Glass Transition Temperature of Polymers. Advanced Materials Research, 864–867, (2013), P. 751–754.
DOI: 10.4028/www.scientific.net/amr.864-867.751
Google Scholar
[40]
Wu, G., Liu, S., Jia, H., & Dai, J. Preparation and properties of heat resistant polylactic acid (PLA)/Nano-SiO2 composite filament. Journal of Wuhan University of Technology-Mater. Sci. Ed., 31(1) (2016), P. 164-171.
DOI: 10.1007/s11595-016-1347-2
Google Scholar
[41]
Hakim, R. H., Cailloux, J., Santana, O. O., Bou, J., Sánchez‐Soto, M., Odent, J., & Maspoch, M. L. PLA/SiO2 composites: Influence of the filler modifications on the morphology, crystallization behavior, and mechanical properties. Journal of Applied Polymer Science, 134(40) (2017), 45367.
DOI: 10.1002/app.45367
Google Scholar