Thermal and Structural Properties of Poly(Lactic Acid)/Silica/Alumina Composite Materials

Article Preview

Abstract:

In the present study, Polylactic acid/ silicon dioxide (SiO2)/ alumina (Al2O3) composite films were produced by a casting method. Thermal, morphological, optical and structural properties of obtaining samples investigated. The addition of aluminum monoxide and silicon dioxide fillers in PLA matrix increases the glass transition temperature significantly, and the Al2O3 and SiO2 particles behave as good nucleating agents with PLA matrix. A homogeneous distribution of SiO2 and Al2O3 particles was observed in the composite films. XRD results revealed that the addition of SiO2 particles improved the crystallinity of PLA, knowing that the degree of crystallinity increase from 2.75% to 31.63% by adding the nucleating agents. The DSC results showed that the glass transition temperature increases by 12 °C in the composites than the pure PLA.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1078)

Pages:

161-169

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. M. Nampoothiri, N.R Nair. and John, R.P., An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 101(22) 2010, pp.8493-8501.

DOI: 10.1016/j.biortech.2010.05.092

Google Scholar

[2] Auras, Rafael, Harte, Bruce, et Selke, Susan. Polylactides. A new era of biodegradable polymers for packaging application. In: Ann Tech Conf–ANTEC Conf Proc. (2005), pp.320-324.

Google Scholar

[3] J.M. Raquez, Y. Habibi, M. Murariu, and P. Dubois, Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10-11) 2013, pp.1504-1542.

DOI: 10.1016/j.progpolymsci.2013.05.014

Google Scholar

[4] Seo, Jung-Hwan, Han, Jinwoo, Lee, Kyung Soo, et al. Combined effects of chemical and microcellular foaming on foaming characteristics of PLA (poly lactic acid) in injection molding process. Polymer-Plastics Technology and Engineering, 51, 5(2012), pp.455-460.

DOI: 10.1080/03602559.2011.651239

Google Scholar

[5] Solarski, Samuel, Ferreira, Manuela, Devaux, Eric, et al. Designing polylactide/clay nanocomposites for textile applications: Effect of processing conditions, spinning, and characterization. Journal of Applied Polymer Science, 109 (2) (2008), pp.841-851.

DOI: 10.1002/app.28138

Google Scholar

[6] Liu, Shan, Shuhao Qin, Min He, Dengfeng Zhou, Qingdong Qin, and Hao Wang. Current applications of poly (lactic acid) composites in tissue engineering and drug delivery., Composites Part B: Engineering 199 (2020): 108238.

DOI: 10.1016/j.compositesb.2020.108238

Google Scholar

[7] Li, G., Zhao, M., Xu, F., Yang, B., Li, X., Meng, X., Teng, L., Sun, F. and Li, Y., Synthesis and biological application of polylactic acid. Molecules, 25(21) 2020, p.5023.

DOI: 10.3390/molecules25215023

Google Scholar

[8] Lunt, James, and Andrew L. Shafer. Polylactic acid polymers from com. Applications in the textiles industry., Journal of Industrial textiles 29(3) (2000): pp.191-205.

DOI: 10.1177/152808370002900304

Google Scholar

[9] Sawalha, Hassan, Karin Schroën, and Remko Boom. Mechanical properties and porosity of polylactide for biomedical applications., Journal of applied polymer science 107.1 (2008): pp.82-93.

DOI: 10.1002/app.27116

Google Scholar

[10] Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K.J.M.S., Functionally graded materials for biomedical applications. Materials Science and Engineering: A, 362(1-2) (2003), pp.40-60.

DOI: 10.1016/s0921-5093(03)00580-x

Google Scholar

[11] Simmons, H., Tiwary, P., Colwell, J. E., & Kontopoulou, M. (2019). Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polymer Degradation and Stability, 166, 248-257.

DOI: 10.1016/j.polymdegradstab.2019.06.001

Google Scholar

[12] Krishnamachari, P., Zhang, J., Lou, J., Yan, J. and Uitenham, L., Biodegradable poly (lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. International Journal of Polymer Analysis and Characterization, 14(4) (2009), pp.336-350.

DOI: 10.1080/10236660902871843

Google Scholar

[13] Huda, M.S., Drzal, L.T., Misra, M., Mohanty, A.K., Williams, K. and Mielewski, D.F., A study on biocomposites from recycled newspaper fiber and poly (lactic acid). Industrial & engineering chemistry research, 44(15) (2005), pp.5593-5601.

DOI: 10.1021/ie0488849

Google Scholar

[14] Domínguez-Robles, J., Martin, N.K., Fong, M.L., Stewart, S.A., Irwin, N.J., Rial-Hermida, M.I., Donnelly, R.F. and Larrañeta, E., Antioxidant PLA composites containing lignin for 3D printing applications: a potential material for healthcare applications. Pharmaceutics, 11(4) (2019), p.165.

DOI: 10.3390/pharmaceutics11040165

Google Scholar

[15] Jiang, S. and Liao, G., Synthesis and characterization of biocompatible poly (ethylene glycol)-b-poly (L-lactide) and study on their electrospun scaffolds. Polymer-Plastics Technology and Engineering, 51(12) (2012), pp.1237-1244.

DOI: 10.1080/03602559.2012.698686

Google Scholar

[16] Perego, G., Cella, G.D. and Bastioli, C., Effect of molecular weight and crystallinity on poly (lactic acid) mechanical properties. Journal of Applied Polymer Science, 59(1) (1996), pp.37-43.

DOI: 10.1002/(sici)1097-4628(19960103)59:1<37::aid-app6>3.0.co;2-n

Google Scholar

[17] Ghosh, S., Viana, J.C., Reis, R.L. and Mano, J.F., Effect of processing conditions on morphology and mechanical properties of injection‐molded poly (l‐lactic acid). Polymer Engineering & Science, 47(7) (2007), pp.1141-1147.

DOI: 10.1002/pen.20799

Google Scholar

[18] Kokturk, G.; Serhatkulu, T.F.; Cakmak, M.; Piskin, E. Evolution of phase behavior and orientation in uniaxially deformed polylactic acid films. Polym. Eng. Sci. 42 (8) (2002), pp.1619-1628.

DOI: 10.1002/pen.11057

Google Scholar

[19] Ikada, Y. and Tsuji, H., Biodegradable polyesters for medical and ecological applications. Macromolecular rapid communications, 21(3) (2000), pp.117-132.

DOI: 10.1002/(sici)1521-3927(20000201)21:3<117::aid-marc117>3.0.co;2-x

Google Scholar

[20] Yuzay, Isinay E., Rafael Auras, and Susan Selke. Poly (lactic acid)/Aluminum Oxide Composites Fabricated by Sol‐Gel and Melt Compounding Processes., Macromolecular Materials and Engineering 295.3 (2010), pp.283-292.

DOI: 10.1002/mame.200900223

Google Scholar

[21] Simmons, H., Tiwary, P., Colwell, J. E., & Kontopoulou, M., Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polymer Degradation and Stability, 166 (2019), pp.248-257.

DOI: 10.1016/j.polymdegradstab.2019.06.001

Google Scholar

[22] Wang, Yaming, et al. Orientation and structural development of semicrystalline poly (lactic acid) under uniaxial drawing assessed by infrared spectroscopy and X-ray diffraction., Polymer Testing 41 (2015), pp.163-171.

DOI: 10.1016/j.polymertesting.2014.11.010

Google Scholar

[23] Singh, Shikha, et al. Orientation of Polylactic Acid–Chitin Nanocomposite Films via Combined Calendering and Uniaxial Drawing: Effect on Structure, Mechanical, and Thermal Properties., Nanomaterials 11.12 (2021), p.3308.

DOI: 10.3390/nano11123308

Google Scholar

[24] Pilić, Branka M., et al. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid) polymer matrix., Hemijska industrija 70.1 (2016), pp.73-80.

DOI: 10.2298/hemind150107015p

Google Scholar

[25] Kaseem, Mosab, et al. A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites., Polymers 13.18 (2021), p.3036.

DOI: 10.3390/polym13183036

Google Scholar

[26] Li, Yi, et al. Thermal and mechanical properties of stereocomplex polylactide enhanced by nanosilica., Colloid and Polymer Science (2021), pp.1-12.

Google Scholar

[27] Yuzay, Isinay E., Rafael Auras, and Susan Selke. Poly (lactic acid)/Aluminum Oxide Composites Fabricated by Sol‐Gel and Melt Compounding Processes., Macromolecular Materials and Engineering 295.3 (2010), pp.283-292.

DOI: 10.1002/mame.200900223

Google Scholar

[28] Zhang, Y., Deng, B. Y., and Liu., Q. S. Rheology and crystallisation of PLA containing PLA-grafted nanosilica., Plastics, Rubber and Composites 43.9 (2014): pp.309-314.

DOI: 10.1179/1743289814y.0000000099

Google Scholar

[29] Wu, J. H., Yen, M. S., Kuo, M. C., & Chen, B. H. Physical properties and crystallization behavior of silica particulates reinforced poly (lactic acid) composites. Materials Chemistry and Physics, 142(2-3) (2013), pp.726-733.

DOI: 10.1016/j.matchemphys.2013.08.031

Google Scholar

[30] Ali, N. Abbas, I. Atta AL-Ajaj, and FT Mohammed Noori. Effect of nano SiO2 on some mechanical properties of biodegradable polylactic acid., Int. J. Mech. Eng. Technol 5.2 (2014), pp.1-7.

Google Scholar

[31] Bouamer, A., Benrekaa, N., Younes, A., & Amar, H., Characterization of the Polylactic acid stretched uniaxial and annealed by Raman spectrometry and Differential scanning calorimetry. In IOP Conference Series: Materials Science and Engineering, IOP Publishing. 461 (1) (2018), p.012006.

DOI: 10.1088/1757-899x/461/1/012006

Google Scholar

[32] Łopusiewicz, Ł., Jędra, F., & Mizielińska, M., New poly (lactic acid) active packaging composite films incorporated with fungal melanin. Polymers, 10(4) (2018), p.386.

DOI: 10.3390/polym10040386

Google Scholar

[33] Vano‐Herrera, K., Misiun, A., & Vogt, C., Preparation and characterization of poly lactic acid)/poly (methyl methacrylate) blend tablets for application in quantitative analysis by micro Raman spectroscopy. Journal of Raman spectroscopy, 46(2) (2015), pp.273-279.

DOI: 10.1002/jrs.4603

Google Scholar

[34] Smith, P. B., Leugers, A., Kang, S., Hsu, S. L., & Yang, X., An analysis of the correlation between structural anisotropy and dimensional stability for drawn poly (lactic acid) films. Journal of applied polymer science, 82(10) (2001), pp.2497-2505.

DOI: 10.1002/app.2100

Google Scholar

[35] Milan Vuksic, Irena Zmak, Lidija Curkovic, Danko Coric, Petra Jenus, Andraz Kocjan, Evaluating recycling potential of waste alumina powder for ceramics production using response surface methodology, Journal of Materials Research and Technology 11 (2021), pp.866-874.

DOI: 10.1016/j.jmrt.2021.01.064

Google Scholar

[36] Patrick A Folkes, Patrick Taylor, Charles Rong, Barbara Nichols, Harry Hier, and Mikella Farrell, Raman Scattering from Tin, Sensors and Electron Devices Directorate, US Army Research Laboratory, ARL-TR-7448, SEP (2015).

Google Scholar

[37] Beirong Ye, Chao Jia, Ziwei Li, Lei Li, Qiang Zhao, Jinshu Wang, Hui Wu, Solution-blow spun PLA/SiO2 nanofiber membranes toward high efficiency oil/water separation, Journal Appl. Polym. Sci. 2020; e49103, pp.1-9.

DOI: 10.1002/app.49103

Google Scholar

[38] Bouamer A., Benrekaa N., Younes A., Characterization of poly lactic acid ceramic composites synthesized by casting method, Materials Today: Proceedings 42 (part 5) (2021), P 2959-2962.

DOI: 10.1016/j.matpr.2020.12.803

Google Scholar

[39] Askadskii, A., Popova, M., Matseevich, T., & Kurskaya, E., The Influence of the Degree of Crystallinity on the Glass Transition Temperature of Polymers. Advanced Materials Research, 864–867, (2013), P. 751–754.

DOI: 10.4028/www.scientific.net/amr.864-867.751

Google Scholar

[40] Wu, G., Liu, S., Jia, H., & Dai, J. Preparation and properties of heat resistant polylactic acid (PLA)/Nano-SiO2 composite filament. Journal of Wuhan University of Technology-Mater. Sci. Ed., 31(1) (2016), P. 164-171.

DOI: 10.1007/s11595-016-1347-2

Google Scholar

[41] Hakim, R. H., Cailloux, J., Santana, O. O., Bou, J., Sánchez‐Soto, M., Odent, J., & Maspoch, M. L. PLA/SiO2 composites: Influence of the filler modifications on the morphology, crystallization behavior, and mechanical properties. Journal of Applied Polymer Science, 134(40) (2017), 45367.

DOI: 10.1002/app.45367

Google Scholar