Mechanical Performance and Durability of Mortar Based on Slag Cement and NaOH-Activated Slag

Article Preview

Abstract:

This paper investigates the valorization of slag in cement production in order to obtain a sustainable mortar and participate in protecting the environment. The study evaluated the setting time, hydration heat, mechanical strengths, drying shrinkage, sulfuric acid and sulfate attack of mortars. These mortars are based on Portland cement (PC), slag cements containing 10%, 30% and 50% slag and alkali-activated slag (AAS) using 6% and 9% of sodium hydroxide (NaOH). The results show that the increase in slag replacement rate increases the setting time accompanied by a drop in initial mechanical strength such that the compressive strength decreased by 30% at two days for a 50% slag substitution; also, it considerably reduces the shrinkage and hydration heat. The resistance to sulfate and sulfuric acid attack increases with the slag replacement rate. NaOH-activated slag mortar is the most resistant binder to sulfate attack and sulfuric acid, but it develops a lower mechanical strength and a more significant shrinkage than PC mortar. X-ray diffraction (XRD) analysis carried out on binder paste shows the formation of the same main hydration products in PC and slag cement with a small amount of portlandite in the last binder. Calcium silicate hydrate (CSH) and Hydrotalcite are the main hydration products of AAS.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1078)

Pages:

179-188

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.L. Scrivener, R.J. Kirkpatrick, Innovation in use and research on cementitious material, Cement and Concrete Research. 28(2) (2008) 128-136.

DOI: 10.1016/j.cemconres.2007.09.025

Google Scholar

[2] J. Deja, A. Uliasz-Bochenczyk, E. Mokrzycki, CO2 emissions from Polish cement industry, International Journal of Greenhouse Gas Control. 4(4) (2010) 583-588.

DOI: 10.1016/j.ijggc.2010.02.002

Google Scholar

[3] A. Bougara, C. Lynsdale, K. Ezziane, Activation of Algerian slag in mortars, Construction and Building Materials. 23(1) (2009) 542-547.

DOI: 10.1016/j.conbuildmat.2007.10.012

Google Scholar

[4] F. Bellmann, J. Stark, Activation of blast furnace slag by a new method, Cement and Concrete Research. 39(8) (2009) 644-650.

DOI: 10.1016/j.cemconres.2009.05.012

Google Scholar

[5] J.I. Escalante, L.Y. Gómez, K.K. Johal, G. Mendoza, H. Mancha, J. Méndez, Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions, Cement and Concrete Research. 31(10) (2001) 1403-1409.

DOI: 10.1016/s0008-8846(01)00587-7

Google Scholar

[6] M.A. Saafan, Z.A. Etman, Microstructure and durability of ground granulated blast furnace slag cement Mortars, Iranian Journal of Science and Technology, Transactions of Civil Engineering. 45(3) (2021) 1457-1465.

DOI: 10.1007/s40996-020-00533-3

Google Scholar

[7] T. Bakharev, J.G. Sanjayan, Y.B. Cheng, Effect of elevated temperature curing on properties of alkali-activated slag concrete, Cement and Concrete Research. 29(10) (1999) 1619-1625.

DOI: 10.1016/s0008-8846(99)00143-x

Google Scholar

[8] X. Wu, W. Jiang, D.M. Roy, Early activation and properties of slag cement, Cement and Concrete Research. 20(6) (1990), 961-974.

DOI: 10.1016/0008-8846(90)90060-b

Google Scholar

[9] D. Krizan, B. Zivanovic, Effects of dosage and modulus of water glass on early hydration of alkali–slag cements, Cement and Concrete Research. 32(8) (2002) 1181-1188.

DOI: 10.1016/s0008-8846(01)00717-7

Google Scholar

[10] Y. Zuo, M. Nedeljković, G. Ye, Pore solution composition of alkali-activated slag/fly ash pastes, Cement and Concrete Research. 115 (2019) 230-250.

DOI: 10.1016/j.cemconres.2018.10.010

Google Scholar

[11] T. Bakharev, J.G. Sanjayan, Y. Cheng, Alkali activation of Australian slag cements, Cement and Concrete Research. 29(1) (1999) 113-120.

DOI: 10.1016/s0008-8846(98)00170-7

Google Scholar

[12] S.D. Wang, K.L. Scrivener, P.L. Pratt, Factors affecting the strength of alkali-activated slag, Cement and Concrete Research. 24(6) (1994) 1033-1043.

DOI: 10.1016/0008-8846(94)90026-4

Google Scholar

[13] H. Lahalle, V. Benavent, V. Trincal, T. Wattez, R. Bucher, M. Cyr, Robustness to water and temperature, and activation energies of metakaolin-based geopolymer and alkali-activated slag binders, Construction and Building Material. 300 (2021) 124066.

DOI: 10.1016/j.conbuildmat.2021.124066

Google Scholar

[14] K.C. Reddy, K.V.L. Subramaniam, Blast Furnace Slag Hydration in an Alkaline Medium: Influence of Sodium Content and Sodium Hydroxide Molarity, Journal of Materials in Civil Engineering. 32(12) (2020) 04020371.

DOI: 10.1061/(asce)mt.1943-5533.0003455

Google Scholar

[15] B.S. Gebregziabiher, R.J. Thomas, S. Peethamparan, Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders, Construction and Building Materials. 113 (2016) 783–793.

DOI: 10.1016/j.conbuildmat.2016.03.098

Google Scholar

[16] F. Puertas, T. Amat, A. Fernández-Jiménez, T. Vázquez, Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres, Cement and Concrete Research. 33(12) (2003) 2031-2036.

DOI: 10.1016/s0008-8846(03)00222-9

Google Scholar

[17] J. Goncalves, M. El-Bakkari, Y. Boluk, V. Bindiganavile, Cellulose nanofibres (CNF) for sulphate resistance in cement based systems, Cement and Concrete Composites. 99 (2019) 100–111.

DOI: 10.1016/j.cemconcomp.2019.03.005

Google Scholar

[18] N.A.M. Beltrame, C.A. da Luz, M. Perardt, R.D. Hooton, Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates, Construction and Building Materials. 238 (2020) 117710.

DOI: 10.1016/j.conbuildmat.2019.117710

Google Scholar

[19] A. Pereira, J.L. Akasaki, J. L. Melges, M.M. Tashima, L. Soriano, M.V. Borrachero, J. Monzó, J. Payá, Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceramics International, 41(10) (2015) 13012-13024.

DOI: 10.1016/j.ceramint.2015.07.001

Google Scholar

[20] L. Jianyong, Y. Yan, A study on creep and drying shrinkage of high performance concrete, Cement and Concrete Research. 31(8) (2001) 1203-1206.

DOI: 10.1016/s0008-8846(01)00539-7

Google Scholar

[21] P. Awoyera, A. Adesina, A critical review on application of alkali activated slag as a sustainable composite binder, Case Studies in Construction Materials. 11 (2019), e00268.

DOI: 10.1016/j.cscm.2019.e00268

Google Scholar

[22] T. Ayub, N. Shafiq, S.U. Khan, M.F. Nuruddin, Durability of Concrete with Different Mineral Admixtures: A Review, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering. 7(8) (2013) 265-276.

Google Scholar

[23] M. Vafaei, A. Allahverdi, P. Dong, N. Bassim, M. Mahinroosta, Resistance of red clay brick waste/phosphorus slag-based geopolymer mortar to acid solutions of mild concentration, Journal of Building Engineering. 34 (2021) 102066.

DOI: 10.1016/j.jobe.2020.102066

Google Scholar