[1]
W. S. Miller et al., Recent development in aluminium alloys for the automotive industry,, Mater. Sci. Eng. A, vol. 280, no. 1, p.37–49, Mar. 2000,.
Google Scholar
[2]
A. Jenab, I. Sari Sarraf, D. E. Green, T. Rahmaan, and M. J. Worswick, The Use of genetic algorithm and neural network to predict rate-dependent tensile flow behaviour of AA5182-Osheets,, Mater. Des., vol. 94, p.262–273, Mar. 2016,.
DOI: 10.1016/j.matdes.2016.01.038
Google Scholar
[3]
S. J. Li, W. N. Chen, B. Krishna Singh, N. Kosimov, and D. W. Jung, Study on Flow Stress Model of AA5005 Material,, Solid State Phenom., vol. 335, p.107–112, 2022,.
DOI: 10.4028/p-4t00fs
Google Scholar
[4]
S. Li, W. Chen, K. S. Bhandari, D. W. Jung, and X. Chen, Flow Behavior of AA5005 Alloy at High Temperature and Low Strain Rate Based on Arrhenius-Type Equation and Back Propagation Artificial Neural Network (BP-ANN) Model,, Materials, vol. 15, no. 11, p.3788, May 2022,.
DOI: 10.3390/ma15113788
Google Scholar
[5]
F. Yin, L. Hua, H. Mao, X. Han, D. Qian, and R. Zhang, Microstructural modeling and simulation for GCr15 steel during elevated temperature deformation,, Mater. Des., vol. 55, p.560–573, Mar. 2014,.
DOI: 10.1016/j.matdes.2013.10.042
Google Scholar
[6]
W. N. Chen, S. J. Li, N. Kosimov, B. Krishna Singh, and D. W. Jung, Research on High-Temperature Constitutive Relationship of Aluminum Alloy,, Solid State Phenom., vol. 335, p.101–106, 2022,.
DOI: 10.4028/p-zr45qd
Google Scholar
[7]
M. Murugesan and D. W. Jung, Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications,, Materials, vol. 12, no. 4, Art. no. 4, Jan. 2019,.
DOI: 10.3390/ma12040609
Google Scholar
[8]
W. Chen, S. Li, S. Aziz, K. S. Bhandari, X. Chen, and D.-W. Jung, Flow Behavior Modeling Optimization and Activation Energy Analysis of Al-Mg Alloy Aided by Genetic Algorithm., Rochester, NY, Oct. 05, 2022. Accessed: Nov. 06, 2022. [Online]. Available: https://papers.ssrn.com/abstract=4235225.
DOI: 10.2139/ssrn.4235225
Google Scholar
[9]
Y. Q. Cheng, H. Zhang, Z. H. Chen, and K. F. Xian, Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation,, J. Mater. Process. Technol., vol. 208, no. 1–3, p.29–34, Nov. 2008,.
DOI: 10.1016/j.jmatprotec.2007.12.095
Google Scholar
[10]
N. Kotkunde, H. N. Krishnamurthy, S. K. Singh, and G. Jella, Experimental and Numerical Investigations on Hot Deformation Behavior and Processing Maps for ASS 304 and ASS 316,, High Temp. Mater. Process., vol. 37, no. 9–10, p.873–888, Oct. 2018,.
DOI: 10.1515/htmp-2017-0047
Google Scholar
[11]
H. R. R. Ashtiani and A. A. Shayanpoor, New constitutive equation utilizing grain size for modeling of hot deformation behavior of AA1070 aluminum,, Trans. Nonferrous Met. Soc. China, vol. 31, no. 2, p.345–357, Feb. 2021,.
DOI: 10.1016/s1003-6326(21)65500-0
Google Scholar
[12]
G. Ji, F. Li, Q. Li, H. Li, and Z. Li, A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel,, Mater. Sci. Eng. A, vol. 528, no. 13, p.4774–4782, May 2011,.
DOI: 10.1016/j.msea.2011.03.017
Google Scholar