[1]
S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan, D.H.B. Ripin, Large-Scale Oxidations in the Pharmaceutical Industry, Chem. Rev., 2006, pp.2943-2989.
DOI: 10.1021/cr040679f
Google Scholar
[2]
G.Tojo, M.I. Fernandez, Oxidation of alcohols to aldehydes and ketones, Springer, 2006.
Google Scholar
[3]
E.J. Horn, B.R. Rosen, P.S. Baran, Synthetic organic electrochemistry: an enabling and innately sustainable method, ACS Cent. Sci. Vol. 2, 5 (2016) 302–308.
DOI: 10.1021/acscentsci.6b00091
Google Scholar
[4]
A. Badalyan, S.S. Stahl, Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators, Nature. Vol. 535 (2016) 406–410.
DOI: 10.1038/nature18008
Google Scholar
[5]
M. Rafiee, K.C. Miles, S.S. Stahl, Electrocatalytic alcohol oxidation with TEMPO and bicyclic nitroxyl derivatives: Driving force trumps steric effects, J. Am. Chem. Soc. Vol. 137 (2015) 14751–14757.
DOI: 10.1021/jacs.5b09672
Google Scholar
[6]
R. Francke, R.D. Little, Redox catalysis in organic electrosynthesis: basic principles and recent developments, Chemical Society Reviews. Vol. 43(8) (2014) 2492–2521.
DOI: 10.1039/c3cs60464k
Google Scholar
[7]
R. Ciriminna, M. Ghahremani, B. Karimi, M. Pagliaro, Electrochemical Alcohol Oxidation Mediated by TEMPO like Nitroxyl Radicals, Chemistry Open. 6 (2017) 5–10.
DOI: 10.1002/open.201600086
Google Scholar
[8]
M.F. Semmelhack, S.C. Chuen, D.A. Cortes, Nitroxyl-Mediated Electrooxidation of Alcohols to Aldehydes and Ketones, Journal of the American Chemical Society. Vol. 105 (1983) 4492-4494.
DOI: 10.1021/ja00351a070
Google Scholar
[9]
P.A. Krasutsky, A.B. Khotkevych, A. Pushechnikov, A. Rudnitskaya, Electrochemical Method for the Production of Betulin Aldehyde, 2016, WO 20061 05357A3.
Google Scholar
[10]
N. Paper, Industries Succeeds in Practical Application of Cellulose Nanofiber by TEMPO Catalytic Oxidation, 2015 (URL: www.nipponpapergroup.com/english/news/year/2015/news150421003061.html)
Google Scholar
[11]
Y. Luo, J. Zhang, X. Li, C. Liao, X. Li, The cellulose nanofibers for optoelectronic conversion and energy storage, J. Nanomater, 2014, p.13
DOI: 10.1155/2014/654512
Google Scholar
[12]
R. Ciriminna, V. Pandarus, F. Béland, Y.-J. Xu, M. Pagliaro, Heterogeneously Catalyzed Alcohol Oxidation for the Fine Chemical Industry Organic Process Research & Development Vol. 19 (2015) 1554–1558.
DOI: 10.1021/acs.oprd.5b00204
Google Scholar
[13]
J.E. Nutting, M. Rafiee, S.S. Stahl, Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions, Chemical Reviews Vol. 118, 9 (2018) 4834–4885.
DOI: 10.1021/acs.chemrev.7b00763
Google Scholar
[14]
V. P. Kashparova, I. Yu. Zhukova, E. N. Papina, E. Sh. Kagan, Electrochemical variant of the synthesis of oxoammonium salt and nitroxyl radical, Proceedings of the Higher Educational Institution, North Caucasus region, Technical sciences. 3(199) (2018) 129–133
DOI: 10.17213/0321-2653-2018-3-129-133
Google Scholar
[15]
A.C. Cardiel, B. J. Taitt, K.-S. Choi, Stabilities, regeneration pathways, and electrocatalytic properties of nitroxyl radicals for the electrochemical oxidation of 5-hydroxymethylfurfural, ACS Sustainable Chem. Eng., Vol. 7. 13 (2019) 11138-11149.
DOI: 10.1021/acssuschemeng.9b00203
Google Scholar
[16]
A. Rahimi, A. Azarpira, H. Kim, J. Ralph, S.S. Stahl, Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin, J. Am. Chem. Soc. Vol. 135, 17 (2013) 6415-6418.
DOI: 10.1021/ja401793n
Google Scholar
[17]
V.V. Zhdankin, Hypervalent iodine (III) reagents in organic synthesis, ARKIVOC, 1 (2009) 1-62.
DOI: 10.3998/ark.5550190.0010.101
Google Scholar
[18]
N. Merbouh, J.M. Bobbitt, C. Brückner, Preparation of tetramethylpiperdine-1-oxoammonlum salts and their use as oxidants in organic chemistry. a review, Organic preparations and procedures inc. Vol. 36, 1 (2004) 1-31.
DOI: 10.1080/00304940409355369
Google Scholar
[19]
V.P. Kashparova, V.A. Klushin, I.Yu. Zhukova, I.S. Kashparov, D.V. Leontyeva, I.B. Il'chibaeva, N.V. Smirnova, E.Sh. Kagan, V.M. Chernyshev, TEMPO-like nitroxide combined with an alkyl-substituted pyridine: An efficient catalytic system for the selective oxidation of alcohols with iodin, Tetrahedron Lett. Vol. 58 (2017) 3517–3521.
DOI: 10.1016/j.tetlet.2017.07.088
Google Scholar
[20]
R.A. Sheldon, I.W.C.E. Arenas, Organocatalytic oxidations mediated by nitroxyl radicals. Advanced synthesis and cat. Vol. 346, 9-10 (2004) 1051-1071.
DOI: 10.1002/adsc.200404110
Google Scholar
[21]
V.P. Kashparova, I.S. Kashparov, A.V. Astakhov, I.B. Ilchibaeva, E.S. Kagan, I.Y. Zhukova, Oxidative dimerization of alcohols in the presence of nitroxyl radical–iodine catalytic system, Russian journal of general chem. Vol. 86, 11 (2016) 2423-2426.
DOI: 10.1134/s1070363216110049
Google Scholar
[22]
C.B. Kelly, K.M. Lambert, M.A. Mercadante, J.M. Ovian, W.F. Bailey, N.E. Leadbeater, Access to nitriles from aldehydes mediated by an oxoammonium salt. Angewandte chemie international edit, Vol. 54, Is.14 (2015) 4241-4245.
DOI: 10.1002/anie.201412256
Google Scholar
[23]
J. Wang, C. Liu, J. Yuan, A. Lei, Transition-metal-free aerobic oxidation of primary alcohols to carboxylic acids. New J. Chem. Vol. 37, Is. 6 (2013) 1700-1703.
DOI: 10.1039/c3nj00045a
Google Scholar
[24]
A. Abramovich, H. Toledo, E. Pisarevsky, A.M. Szpilman, Organocatalytic Oxidative Dimerization of Alcohols to Esters, Synlett. Vol. 23, 15 (2015) 2261-2265.
DOI: 10.1055/s-0032-1317018
Google Scholar
[25]
S. Gaspa, A. Porcheddu, L. De Luca, Metal-Free Direct Oxidation of Aldehydes to Esters Using TCCA. Organic Letters, Vol. 17 (2015) 3666–3669.
DOI: 10.1021/acs.orglett.5b01579
Google Scholar
[26]
P.L. Anelli, C. Biffi, F. Montanari, S. Quici, Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions, J. Org. Chem. Vol. 52 (1987) 2559–2562.
DOI: 10.1021/jo00388a038
Google Scholar
[27]
S.D. Rychnovsky, R.J. Vaidyanthan, TEMPO-Catalyzed oxidations of alcohols using m-CPBA: The role of halide ions, J. Org. Chem., Vol. 64 (1999) 310-312.
DOI: 10.1021/jo9819032
Google Scholar
[28]
R.A. Miller, R.S. Hoerrner, Iodine as a chemoselective reoxidant of TEMPO: application to the oxidation of alcohols to aldehydes and ketones, Organic Lett., Vol. 5, 3 (2003) 285–287.
DOI: 10.1021/ol0272444
Google Scholar
[29]
S.Tang, K. Liu, Y. Long, X. Qi, Y. Lan, A. Lei, Tuning radical reactivity using iodine in oxidative C(sp3)–H/C(sp)–H cross-coupling: an easy way toward the synthesis of furans and indolizines, Chem. Commun., Vol. 51 (2015) 8769–8772.
DOI: 10.1039/c5cc01825k
Google Scholar
[30]
S. Tang, K. Liu, Y. Long, X. Gao, M. Gao, A. Lei, Iodine-Catalyzed Radical Oxidative Annulation for the Construction of Dihydrofurans and Indolizines, Org. Lett. Vol. 17 (2015) 2404–2407.
DOI: 10.1021/acs.orglett.5b00912
Google Scholar
[31]
M.S. Yusubov, V.V. Zhdankin, Iodine catalysis: A green alternative to transition metals in organic chemistry and technology, Resource-Efficient Tech., Vol. 1 (2015) 49–67.
DOI: 10.1016/j.reffit.2015.06.001
Google Scholar
[32]
D. Beukeaw, K. Udomsasporn, S. Yotphan, Iodine-Catalyzed Oxidative Cross-Coupling of Indoles and Azoles: Regioselective Synthesis of N-Linked 2-(Azol-1-yl)indole Derivatives, J. Org. Chem., Vol. 80 (2015) 3447–3454.
DOI: 10.1021/jo502933e
Google Scholar
[33]
Y. Sun, K. Li, Electrocatalytic Upgrading of Biomass-Derived Intermediate Compounds to Value-Added Products, Chem. Eur. J. Vol. 24 (2018) 18258–18270.
DOI: 10.1002/chem.201803319
Google Scholar
[34]
M.R. Zachary, M.K. Matthew, D.G. Hannes, F.K. Shannon, S. Stahl, Electrochemical oxidation of alcohols and aldehydes to carboxylic acids catalyzed by 4-acetamido-tempo: an alternative to "anelli" and "pinnick" oxidations, ACS Catal. Vol. 87 (2018) 6738-6744.
DOI: 10.1021/acscatal.8b01640
Google Scholar
[35]
A.R. Hajipour, S.E. Mallakpour, H.A. Samimi, Oxidation of Alcohols with Benzyltriphenylphosponium Periodate, Synlett, 11 (2001) 1735–1738.
DOI: 10.1055/s-2001-18093
Google Scholar
[36]
J.M. Bobbitt, C. BrüCkner, N. Merbouh, Oxoammonium‐ and Nitroxide‐Catalyzed Oxidations of Alcohols, Organic React., 2009, 103–424.
DOI: 10.1002/0471264180.or074.02
Google Scholar
[37]
E.Sh. Kagan, V.P. Kashparova, I.Yu. Zhukova, I.I. Kashparov, Oxidation of alcohols by electrochemically generated iodine in the presence of nitroxyl radicals, Journal of Applied Chemistry, 83, Vol. 4 (2010) 693–695.
DOI: 10.1134/s1070427210040324
Google Scholar
[38]
T.A. Hamlin, C. B. Kelly, J.M. Ovian, R.J. Wiles, L.J. Tilley, N.E. Leadbeater, Toward a unified mechanism for oxoammonium salt-mediated oxidation reactions: a theoretical and experimental study using a hydride transfer model, J. Org. Chem., Vol. 80, 16 (2015) 8150-8167.
DOI: 10.1021/acs.joc.5b01240
Google Scholar
[39]
J.M. Bobbitt, A.L. Bartelson, W.F. Bailey, T.A. Hamlin, C.B. Kelly, Oxoammonium salt oxidations of alcohols in the presence of pyridine bases, Journal of organic chemistry, Vol. 79, 3 (2014) 1055-1067.
DOI: 10.1021/jo402519m
Google Scholar
[40]
M.F. Semmelhack, C.R. Schmid, D.A. Carte's, Mechanism of the oxidation of alcohols by 2,2,6,6-tetramethylpiperidine nitrosonium cation, Tetrahedron Lett. Vol. 27, Is. 10 (1986) 1119-1122.
DOI: 10.1016/s0040-4039(00)84193-3
Google Scholar
[41]
W.F. Bailey, Mechanism of the Oxidation of Alcohols by Oxoammonium Cations, J. Org. Chem. 72 (2007) 4504–4509.
DOI: 10.1021/jo0704614
Google Scholar
[42]
H. Toledo, E. Pisarevsky, A. Abramovich, A.M. Szpilman, Organocatalytic oxidation of aldehydes to mixed anhydrides, J. Chem. Commun., Vol. 4 (2013) 4367–4369.
DOI: 10.1039/c2cc35220f
Google Scholar