Industrial Electrocatalytic Oxidation - The Future of «Green Chemistry»

Article Preview

Abstract:

From the point of view of "green chemistry", the relevance and prospects of the electrooxidation of organic compounds is confirmed by numerous scientific data on the practical use of methods developed and introduced into production for obtaining demanded chemical and pharmaceutical preparations. The advantages of electrochemical methods for converting organic substrates into products of low-tonnage chemical industry and pharmaceutical chemistry are shown. The reactions of electrooxidation of alcohol groups of synthetic and natural compounds, mediated by catalytic systems based on inexpensive TEMPO-like nitroxyl radicals, which provide numerous key synthetic advantages over other oxidation methods, are considered. It has been shown that oxidation reactions can be carried out under mild conditions, without the use of environmentally harmful reagents and toxic solvents, without large economic investments and with the maximum yield of high-purity target products with the formation of little or no waste. Further fundamental and technological research is recommended in order to develop effective electrocatalytic systems for use in industrial electrooxidation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1086)

Pages:

125-130

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan, D.H.B. Ripin, Large-Scale Oxidations in the Pharmaceutical Industry, Chem. Rev., 2006, pp.2943-2989.

DOI: 10.1021/cr040679f

Google Scholar

[2] G.Tojo, M.I. Fernandez, Oxidation of alcohols to aldehydes and ketones, Springer, 2006.

Google Scholar

[3] E.J. Horn, B.R. Rosen, P.S. Baran, Synthetic organic electrochemistry: an enabling and innately sustainable method, ACS Cent. Sci. Vol. 2, 5 (2016) 302–308.

DOI: 10.1021/acscentsci.6b00091

Google Scholar

[4] A. Badalyan, S.S. Stahl, Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators, Nature. Vol. 535 (2016) 406–410.

DOI: 10.1038/nature18008

Google Scholar

[5] M. Rafiee, K.C. Miles, S.S. Stahl, Electrocatalytic alcohol oxidation with TEMPO and bicyclic nitroxyl derivatives: Driving force trumps steric effects, J. Am. Chem. Soc. Vol. 137 (2015) 14751–14757.

DOI: 10.1021/jacs.5b09672

Google Scholar

[6] R. Francke, R.D. Little, Redox catalysis in organic electrosynthesis: basic principles and recent developments, Chemical Society Reviews. Vol. 43(8) (2014) 2492–2521.

DOI: 10.1039/c3cs60464k

Google Scholar

[7] R. Ciriminna, M. Ghahremani, B. Karimi, M. Pagliaro, Electrochemical Alcohol Oxidation Mediated by TEMPO like Nitroxyl Radicals, Chemistry Open. 6 (2017) 5–10.

DOI: 10.1002/open.201600086

Google Scholar

[8] M.F. Semmelhack, S.C. Chuen, D.A. Cortes, Nitroxyl-Mediated Electrooxidation of Alcohols to Aldehydes and Ketones, Journal of the American Chemical Society. Vol. 105 (1983) 4492-4494.

DOI: 10.1021/ja00351a070

Google Scholar

[9] P.A. Krasutsky, A.B. Khotkevych, A. Pushechnikov, A. Rudnitskaya, Electrochemical Method for the Production of Betulin Aldehyde, 2016, WO 20061 05357A3.

Google Scholar

[10] N. Paper, Industries Succeeds in Practical Application of Cellulose Nanofiber by TEMPO Catalytic Oxidation, 2015 (URL: www.nipponpapergroup.com/english/news/year/2015/news150421003061.html)

Google Scholar

[11] Y. Luo, J. Zhang, X. Li, C. Liao, X. Li, The cellulose nanofibers for optoelectronic conversion and energy storage, J. Nanomater, 2014, p.13

DOI: 10.1155/2014/654512

Google Scholar

[12] R. Ciriminna, V. Pandarus, F. Béland, Y.-J. Xu, M. Pagliaro, Heterogeneously Catalyzed Alcohol Oxidation for the Fine Chemical Industry Organic Process Research & Development Vol. 19 (2015) 1554–1558.

DOI: 10.1021/acs.oprd.5b00204

Google Scholar

[13] J.E. Nutting, M. Rafiee, S.S. Stahl, Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions, Chemical Reviews Vol. 118, 9 (2018) 4834–4885.

DOI: 10.1021/acs.chemrev.7b00763

Google Scholar

[14] V. P. Kashparova, I. Yu. Zhukova, E. N. Papina, E. Sh. Kagan, Electrochemical variant of the synthesis of oxoammonium salt and nitroxyl radical, Proceedings of the Higher Educational Institution, North Caucasus region, Technical sciences. 3(199) (2018) 129–133

DOI: 10.17213/0321-2653-2018-3-129-133

Google Scholar

[15] A.C. Cardiel, B. J. Taitt, K.-S. Choi, Stabilities, regeneration pathways, and electrocatalytic properties of nitroxyl radicals for the electrochemical oxidation of 5-hydroxymethylfurfural, ACS Sustainable Chem. Eng., Vol. 7. 13 (2019) 11138-11149.

DOI: 10.1021/acssuschemeng.9b00203

Google Scholar

[16] A. Rahimi, A. Azarpira, H. Kim, J. Ralph, S.S. Stahl, Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin, J. Am. Chem. Soc. Vol. 135, 17 (2013) 6415-6418.

DOI: 10.1021/ja401793n

Google Scholar

[17] V.V. Zhdankin, Hypervalent iodine (III) reagents in organic synthesis, ARKIVOC, 1 (2009) 1-62.

DOI: 10.3998/ark.5550190.0010.101

Google Scholar

[18] N. Merbouh, J.M. Bobbitt, C. Brückner, Preparation of tetramethylpiperdine-1-oxoammonlum salts and their use as oxidants in organic chemistry. a review, Organic preparations and procedures inc. Vol. 36, 1 (2004) 1-31.

DOI: 10.1080/00304940409355369

Google Scholar

[19] V.P. Kashparova, V.A. Klushin, I.Yu. Zhukova, I.S. Kashparov, D.V. Leontyeva, I.B. Il'chibaeva, N.V. Smirnova, E.Sh. Kagan, V.M. Chernyshev, TEMPO-like nitroxide combined with an alkyl-substituted pyridine: An efficient catalytic system for the selective oxidation of alcohols with iodin, Tetrahedron Lett. Vol. 58 (2017) 3517–3521.

DOI: 10.1016/j.tetlet.2017.07.088

Google Scholar

[20] R.A. Sheldon, I.W.C.E. Arenas, Organocatalytic oxidations mediated by nitroxyl radicals. Advanced synthesis and cat. Vol. 346, 9-10 (2004) 1051-1071.

DOI: 10.1002/adsc.200404110

Google Scholar

[21] V.P. Kashparova, I.S. Kashparov, A.V. Astakhov, I.B. Ilchibaeva, E.S. Kagan, I.Y. Zhukova, Oxidative dimerization of alcohols in the presence of nitroxyl radical–iodine catalytic system, Russian journal of general chem. Vol. 86, 11 (2016) 2423-2426.

DOI: 10.1134/s1070363216110049

Google Scholar

[22] C.B. Kelly, K.M. Lambert, M.A. Mercadante, J.M. Ovian, W.F. Bailey, N.E. Leadbeater, Access to nitriles from aldehydes mediated by an oxoammonium salt. Angewandte chemie international edit, Vol. 54, Is.14 (2015) 4241-4245.

DOI: 10.1002/anie.201412256

Google Scholar

[23] J. Wang, C. Liu, J. Yuan, A. Lei, Transition-metal-free aerobic oxidation of primary alcohols to carboxylic acids. New J. Chem. Vol. 37, Is. 6 (2013) 1700-1703.

DOI: 10.1039/c3nj00045a

Google Scholar

[24] A. Abramovich, H. Toledo, E. Pisarevsky, A.M. Szpilman, Organocatalytic Oxidative Dimerization of Alcohols to Esters, Synlett. Vol. 23, 15 (2015) 2261-2265.

DOI: 10.1055/s-0032-1317018

Google Scholar

[25] S. Gaspa, A. Porcheddu, L. De Luca, Metal-Free Direct Oxidation of Aldehydes to Esters Using TCCA. Organic Letters, Vol. 17 (2015) 3666–3669.

DOI: 10.1021/acs.orglett.5b01579

Google Scholar

[26] P.L. Anelli, C. Biffi, F. Montanari, S. Quici, Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions, J. Org. Chem. Vol. 52 (1987) 2559–2562.

DOI: 10.1021/jo00388a038

Google Scholar

[27] S.D. Rychnovsky, R.J. Vaidyanthan, TEMPO-Catalyzed oxidations of alcohols using m-CPBA: The role of halide ions, J. Org. Chem., Vol. 64 (1999) 310-312.

DOI: 10.1021/jo9819032

Google Scholar

[28] R.A. Miller, R.S. Hoerrner, Iodine as a chemoselective reoxidant of TEMPO: application to the oxidation of alcohols to aldehydes and ketones, Organic Lett., Vol. 5, 3 (2003) 285–287.

DOI: 10.1021/ol0272444

Google Scholar

[29] S.Tang, K. Liu, Y. Long, X. Qi, Y. Lan, A. Lei, Tuning radical reactivity using iodine in oxidative C(sp3)–H/C(sp)–H cross-coupling: an easy way toward the synthesis of furans and indolizines, Chem. Commun., Vol. 51 (2015) 8769–8772.

DOI: 10.1039/c5cc01825k

Google Scholar

[30] S. Tang, K. Liu, Y. Long, X. Gao, M. Gao, A. Lei, Iodine-Catalyzed Radical Oxidative Annulation for the Construction of Dihydrofurans and Indolizines, Org. Lett. Vol. 17 (2015) 2404–2407.

DOI: 10.1021/acs.orglett.5b00912

Google Scholar

[31] M.S. Yusubov, V.V. Zhdankin, Iodine catalysis: A green alternative to transition metals in organic chemistry and technology, Resource-Efficient Tech., Vol. 1 (2015) 49–67.

DOI: 10.1016/j.reffit.2015.06.001

Google Scholar

[32] D. Beukeaw, K. Udomsasporn, S. Yotphan, Iodine-Catalyzed Oxidative Cross-Coupling of Indoles and Azoles: Regioselective Synthesis of N-Linked 2-(Azol-1-yl)indole Derivatives, J. Org. Chem., Vol. 80 (2015) 3447–3454.

DOI: 10.1021/jo502933e

Google Scholar

[33] Y. Sun, K. Li, Electrocatalytic Upgrading of Biomass-Derived Intermediate Compounds to Value-Added Products, Chem. Eur. J. Vol. 24 (2018) 18258–18270.

DOI: 10.1002/chem.201803319

Google Scholar

[34] M.R. Zachary, M.K. Matthew, D.G. Hannes, F.K. Shannon, S. Stahl, Electrochemical oxidation of alcohols and aldehydes to carboxylic acids catalyzed by 4-acetamido-tempo: an alternative to "anelli" and "pinnick" oxidations, ACS Catal. Vol. 87 (2018) 6738-6744.

DOI: 10.1021/acscatal.8b01640

Google Scholar

[35] A.R. Hajipour, S.E. Mallakpour, H.A. Samimi, Oxidation of Alcohols with Benzyltriphenylphosponium Periodate, Synlett, 11 (2001) 1735–1738.

DOI: 10.1055/s-2001-18093

Google Scholar

[36] J.M. Bobbitt, C. BrüCkner, N. Merbouh, Oxoammonium‐ and Nitroxide‐Catalyzed Oxidations of Alcohols, Organic React., 2009, 103–424.

DOI: 10.1002/0471264180.or074.02

Google Scholar

[37] E.Sh. Kagan, V.P. Kashparova, I.Yu. Zhukova, I.I. Kashparov, Oxidation of alcohols by electrochemically generated iodine in the presence of nitroxyl radicals, Journal of Applied Chemistry, 83, Vol. 4 (2010) 693–695.

DOI: 10.1134/s1070427210040324

Google Scholar

[38] T.A. Hamlin, C. B. Kelly, J.M. Ovian, R.J. Wiles, L.J. Tilley, N.E. Leadbeater, Toward a unified mechanism for oxoammonium salt-mediated oxidation reactions: a theoretical and experimental study using a hydride transfer model, J. Org. Chem., Vol. 80, 16 (2015) 8150-8167.

DOI: 10.1021/acs.joc.5b01240

Google Scholar

[39] J.M. Bobbitt, A.L. Bartelson, W.F. Bailey, T.A. Hamlin, C.B. Kelly, Oxoammonium salt oxidations of alcohols in the presence of pyridine bases, Journal of organic chemistry, Vol. 79, 3 (2014) 1055-1067.

DOI: 10.1021/jo402519m

Google Scholar

[40] M.F. Semmelhack, C.R. Schmid, D.A. Carte's, Mechanism of the oxidation of alcohols by 2,2,6,6-tetramethylpiperidine nitrosonium cation, Tetrahedron Lett. Vol. 27, Is. 10 (1986) 1119-1122.

DOI: 10.1016/s0040-4039(00)84193-3

Google Scholar

[41] W.F. Bailey, Mechanism of the Oxidation of Alcohols by Oxoammonium Cations, J. Org. Chem. 72 (2007) 4504–4509.

DOI: 10.1021/jo0704614

Google Scholar

[42] H. Toledo, E. Pisarevsky, A. Abramovich, A.M. Szpilman, Organocatalytic oxidation of aldehydes to mixed anhydrides, J. Chem. Commun., Vol. 4 (2013) 4367–4369.

DOI: 10.1039/c2cc35220f

Google Scholar