Potassium Hydroxide Activation as an Adsorbent for Equilibrium Isotherms of Hexavalent Chromium Adsorptions onto Garcinia mangosteen Shell

Article Preview

Abstract:

The equilibrium isotherms of hexavalent chromium adsorption from water on potassium hydroxide (KOH) activated for mangosteen shell as an adsorbent by carbonization at 400 °C for 2 hours has been researched. The effective specific surface area of a biochar adsorbent is 164 m2/g, and its hexavalent chromium adsorption capacity can be encountered to be replied to on the pH 2.0 with initial feed concentration and temperature. The equilibrium adsorption isotherm models based on the Freundlich, Langmuir, Temkin, Hurkins-Jura, Halsay, Dubinin-Radushkevich, and Jovanovic models have been accompanied to compare the sorbate-sorbent system. The Freundlich isotherm model indicated a good fit with the experimental data for the system studied.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1086)

Pages:

107-114

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Charnkeitking and S. Sripiboon: Key Eng. Mater., Vol.888, (2021), p.99.

Google Scholar

[2] A. Kara, E. Demirbel, N. Tekin, B. Osman and N. Beşirli: J. Hazad. Mater., Vol.286 (2015) p.612.

Google Scholar

[3] H. Peng, and J. Guo: Environ Chem Lett., Vol.18 (2020), p.2055.

Google Scholar

[4] L.C. Flint, M.S. Arias-Paić and J.A. Korak: Environ. Sci. Water Res. Technol., Vol.7 (2021), p.2397.

Google Scholar

[5] R.Saha, K. Mukherjee, I. Saha, A. Ghosh, S. K. Ghosh, and B. Saha: Res. Chem. Intermed., Vol.39 (2013), p.2245.

DOI: 10.1007/s11164-012-0754-z

Google Scholar

[6] M. Ahmadi, E. Kouhgardi, and B. Ramavandi: Korean J. Chem. Eng., Vol.33, (2016), p.2589.

Google Scholar

[7] I. Enniya, L. Rghioui, and A. Jourani: Sustainable Chem. Pharm., Vol.7, (2018), p.9.

Google Scholar

[8] V. P. Dinh, H. Le, V.D. Nguyen, V. A. Dao, N.Q. Hung, L.A. Tuyen and L.V. Tan: RSC advances, Vol.9, (2019), p.25847.

Google Scholar

[9] Ma, H., Yang, J., Gao, X., Liu, Z., Liu, X., and Xu, Z.: J. Hazad. Mater., Vol.369, (2019), p.550.

Google Scholar

[10] A.A. Aryee, E. Dovi, Q. Li, R. Han, Z. Li, and L. Qu: Chemosphere, Vol.287, (2022), p.132030.

Google Scholar

[11] Ali, A., Saeed, K., & Mabood, F.: Alexandria Eng. J., Vol.55, (2016), p.2933.

Google Scholar

[12] Wu, Y., Cha, L., Fan, Y., Fang, P., Ming, Z., Sha, H., Water Air Soil Pollut., Vol.228, (2017), p.1.

Google Scholar

[13] Y. Yi, J. Lv, Y. Liu, and G. Wu: J. Mol. Liq., Vol.225, (2017), p.28.

Google Scholar

[14] Z. Yin, S. Xu, S. Liu, S., Xu, J. Li, and Y. Zhang: Bioresour. Technol., Vol.300, (2020), p.122680.

Google Scholar

[15] E. Vunain, J.B. Njewa, T.T. Biswick, and A.K. Ipadeola: Appl. Water Sci., Vol.11 (2021), p.1.

Google Scholar

[16] J. Yang, J. B. Huang and M. Lin: J. Chem. Eng. Data, Vol.65, No.5, (2020), p.2751.

Google Scholar

[17] M.T. Sikder, T. Kikuchi, J. Suzuki, T. Hosokawa, T. Saito: Sep. Sci. Technol., Vol.48, (2012), p.587.

Google Scholar

[18] T.J. Buran, A.K. Sandhu, Z. Li, C.R. Rock, W.W. Yang, L. J. Gu: Food Eng.,Vol.128, (2014), p.167.

Google Scholar

[19] M. Manjuladevil and S. Manonmani: Orient. J. Chem., Vol.31, (2015), p.531.

Google Scholar

[20] M.H. Dehghani, D. Sanaei, I. Ali and A. Bhatnagard: J. Mol. Liq., Vol.215, (2016), p.671.

Google Scholar

[21] S.M. SamuelAbigail, and R. Chidambaram: PLoS One, Vol.10, No.3, (2015), p.e0116884.

Google Scholar

[22] S. Rangabhashiyam, N. Selvaraju, B.R. Mohan, P.M. Anzil, K. Amith and E. Ushakumary: J. Environ. Eng., (2015), 10.1061/(ASCE)EE.1943-7870.0 000988

DOI: 10.1061/(asce)ee.1943-7870.0000988

Google Scholar

[23] J. Kumari, D-R H. Krishnamoorthy and T.K Arumugam: J. Mater. Environ. Sci., Vol.6 (2015) p.1532.

Google Scholar

[24] M. Suneetha, B.S. Sundar, K. Ravindhranath: J. Anal. Sci. Technol.Vol.6, (2016), p.15.

Google Scholar