Outlook for Dielectric/SiC Interfaces for Future Generation MOSFETs

Article Preview

Abstract:

Silicon carbide (SiC) metal-oxide semiconductor (MOS) power devices such as metal-oxide semiconductor field-effect transistors (MOSFETs) require a stable and low defect-density interface, and a high-quality dielectric, for good device performance and reliability. Notably, the interface and dielectric properties determine the threshold voltage stability, the field-effect channel mobility, and the device lifetime as limited by dielectric breakdown in both the forward on-state and reverse blocking conditions. Here we discuss the present state of SiC MOS processing and properties and point to directions for future development. Important items to address are: 1) interface passivation approaches; 2) dielectrics; 3) device design; and 4) in-depth measurements of the interface quality and reliability.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, J.W. Palmour, IEEE Electron Dev. Lett. 22 (2001) 176-178.

DOI: 10.1109/55.915604

Google Scholar

[2] D.J. Lichtenwalner, S. Sabri, E. van Brunt, B. Hull, S.-H. Ryu, P. Steinmann, A. Romero, S. Ganguly, D.A. Gajewski, S. Allen, and J.W. Palmour, 2020 IEEE International Integrated Reliability Workshop (IIRW), pp.1-6 (2020).

DOI: 10.1109/iirw49815.2020.9312873

Google Scholar

[3] T. Kimoto and H. Watanabe, Appl. Phys. Express 13, 120101 (2020).

Google Scholar

[4] M. Noguchi, T. Watanabe , H. Watanabe, K. Kita, and N. Miura, IEEE Trans. Electron Dev. 68(12), pp.6321-29 (2021).

Google Scholar

[5] H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano, and Y. Sugawara, IEEE Trans. Electron Dev. 20(12, pp.611-13 (1999).

Google Scholar

[6] D.J. Lichtenwalner, L. Cheng, S. Allen, J.W. Palmour, A. Lelis and C. Scozzie, MRS Online Proceedings Library 1693, 25–30 (2014).

Google Scholar

[7] T. Nakanuma, A. Suzuki1, Y. Iwakata, T. Kobayashi, M. Sometani, M. Okamoto, T. Hosoi, T. Shimura, and H. Watanabe, IEEE Inter. Reliab. Phys. Symp. 3B.2-1 (2022).

DOI: 10.1109/irps48227.2022.9764595

Google Scholar

[8] G. Liu, B.R. Tuttle, and S. Dhar, Appl. Phys. Rev. 2, 021307 (2015).

Google Scholar

[9] T. Kimoto, J.A. Cooper, "Fundamentals of Silicon Carbide Technology," IEEE Press, John Wiley and Sons, Singapore (2014).

Google Scholar

[10] S. Dhar, S. Haney, L. Cheng, S.-H. Ryu, A. K. Agarwal, L. C. Yu, and K. P. Cheung, J. Appl. Phys. 108, 054509 (2010).

Google Scholar

[11] G. Pennington and N. Goldsman, J. Appl. Phys. 106, 063701 (2009).

Google Scholar

[12] H. Naik, T.P. Chow, Mat. Sci. Forum Vols. 679-680, pp.633-636 (2011).

Google Scholar

[13] H. Takeda, M. Sometani, T. Hosoi, T. Shimura, H. Yano and H. Watanabe, Mat. Sci. Forum Vol. 1004, p.620–26 (2020).

Google Scholar

[14] D. Okamoto, H. Yano, T. Hatayama, and T. Fuyuki, Appl. Phys. Lett. 96, 203508 (2010).

Google Scholar

[15] D.J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, and J.W. Palmour, Appl. Phys. Lett. 105, 182107 (2014).

Google Scholar

[16] D.J. Lichtenwalner et al., Mat. Sci. Forum Vol. 897, pp.163-166 (2017).

Google Scholar

[17] Xiangyu Yang , Bongmook Lee , and Veena Misra, Vol. 66(1), 539 (2019).

Google Scholar

[18] S. Sekine, M. Okada, T. Kumazawa, M. Sometani, H. Hirai, N. Serizawa, R. Hasunuma, M. Okamoto, and S. Harada, Jpn. J. Appl. Phys. 60, SBBD08 (2021).

DOI: 10.35848/1347-4065/abdf1e

Google Scholar

[19] K. Tachiki, M. Kaneko, and T. Kimoto, Applied Physics Express 14, 031001 (2021).

Google Scholar

[20] T. Kobayashi, T. Okuda1, K. Tachiki, K. Ito, Y. Matsushita, and T. Kimoto, Applied Physics Express 13, 091003 (2020).

Google Scholar

[21] Z. Zhang, Z. Wang, Y. Guo, and J. Robertson, Appl. Phys. Lett. 118, 031601 (2021).

Google Scholar

[22] Y. Xu, X. Zhu, H. D. Lee, C. Xu, S. M. Shubeita, A. C. Ahyi, Y. Sharma, J. R. Williams, W. Lu, S. Ceesay, B. R. Tuttle, A. Wan, S. T. Pantelides, T. Gustafsson, E. L. Garfunkel, and L. C. Feldman, J. Appl. Phys. 115, 033502 (2014).

DOI: 10.1063/1.4861626

Google Scholar

[23] D.G. Schlom and J. H. Haeni, MRS Bulletin 27, 198 (2002).

Google Scholar

[24] G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

Google Scholar

[25] J. Robertson, B. Falabretti, Materials Science and Engineering B 135, p.267–71 (2006).

Google Scholar

[26] R. Suri, C.J. Kirkpatrick, D.J. Lichtenwalner, and V. Misra, Appl. Phys. Lett. 96, 042903 (2010).

Google Scholar

[27] J. McPherson, J-Y. Kim, A. Shanware, and H. Mogul, Appl. Phys. Lett. 82, 2121 (2003).

Google Scholar

[28] D.J. Lichtenwalner, V. Misra, S. Dhar, S.-H. Ryu, and A. Agarwal, Appl. Phys. Lett. 95, 152113 (2009).

Google Scholar

[29] T. Hosoi, S. Azumo, Y. Kashiwagi, S. Hosaka, K. Yamamoto, M. Aketa, H. Asahara, T. Nakamura, T. Kimoto, T. Shimura, H. Watanabe, Proc. 29th ISPSD, pp.247-250 (2017).

DOI: 10.23919/ispsd.2017.7988906

Google Scholar

[30] D.J. Lichtenwalner, (2013). Chap. 9 in: Kar, S. (eds) High Permittivity Gate Dielectric Materials. Springer Series in Advanced Microelectronics, vol 43. Springer, Berlin, Heidelberg.

DOI: 10.1007/978-3-642-36535-5_9

Google Scholar

[31] S. Sridevan, P.K. McLarty and B.J. Baliga, Proc. 9th ISPSD pp.153-156, (1997).

Google Scholar

[32] G. Romano, A. Mihaila and L. Knoll, PCIM Asia, pp.183-187 (2021).

Google Scholar

[33] Y. Nanen, H. Yoshioka, M. Noborio, J. Suda, and T. Kimoto, IEEE Trans. Electron Dev., 56(11), p.2632–2637, (2009)

DOI: 10.1109/ted.2009.2030437

Google Scholar

[34] R.P. Ramamurthy, N. Islam , M. Sampath, D.T. Morisette, and J.A. Cooper, IEEE Trans. Electron Dev. 42(10), pp.90-93 (2021).

Google Scholar

[35] F. Udrea, K. Naydenov, H. Kang, T. Kimoto, T. Kato, E. Kagoshima, T. Nishiwaki, H. Fujiwara, Proc. 33rd ISPSD, pp.75-78 (2021).

DOI: 10.23919/ispsd50666.2021.9452282

Google Scholar

[36] M.E. Bathen, C.T.-K. Lew, J. Woerle, C. Dorfer, U. Grossner, S. Castelletto, and B. C. Johnson, J. Appl. Phys. 131, 140903 (2022).

DOI: 10.1063/5.0077299

Google Scholar

[37] H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys. 112, 024520 (2012).

Google Scholar

[38] A. Salinaro, G. Pobegen, T. Aichinger, B. Zippelius, D. Peters, P. Friedrichs, and L. Frey, IEEE Trans. Electron Dev. 62, (2015).

DOI: 10.1109/ted.2014.2372874

Google Scholar

[39] H. Yoshioka, J. Senzaki, A. Shimozato, Y. Tanaka, and H. Okumura, Appl. Phys. Lett. 104, 083516 (2014).

Google Scholar

[40] L.K. Swanson, P. Fiorenza, F. Giannazzo, A. Frazzetto, and F. Roccaforte, Appl. Phys. Lett. 101, 193501 (2012).

Google Scholar

[41] M. Anders, P. Lenahan, and A. Lelis, J. Appl. Phys. 122, 234503 (2017).

Google Scholar

[42] T. Aichinger, and M. Schmidt, 2020 IEEE International Reliability Physics Symposium (IRPS), pp.1-6 (2020).

Google Scholar

[43] D.B. Habersat, A.J. Lelis and R. Green, 2020 IEEE International Reliability Physics Symposium (IRPS), pp.1-4 (2020).

Google Scholar

[44] X. Zhong, H. Jiang, L. Tang, X. Qi, P. Jiang, and L. Ran, IEEE Trans. Electron Dev. 69(6), 3328 (2022).

Google Scholar

[45] P. Salmen, M.W. Feil, K. Waschneck, H. Reisinger, G. Rescher, I. Voss, M. Sievers, T. Aichinger, Microelectronics Reliability 135, 114575 (2022).

DOI: 10.1016/j.microrel.2022.114575

Google Scholar