Oxide and Interface Defect Analysis of lateral 4H-SiC MOSFETs through CV Characterization and TCAD Simulations

Article Preview

Abstract:

We investigated oxide and interface defects of lateral 4H-SiC MOSFETs through capacitance-voltage (C-V) and conductance-voltage (G-V) characterization at various frequencies and temperatures. By employing consecutive up and down sweeps of the gate voltage at three different temperatures, we experimentally characterized the hysteresis width as the difference between up and down sweeps in the depletion to accumulation (d-a) and depletion to inversion (d-i) regions. We observed an increase in the hysteresis width with decreasing temperature. Although the hysteresis width is not affected by the small-signal frequency, at the same time, increasing the frequency leads to a strong stretch-out effect, especially in the d-i region.Our measurement results indicate that the hysteresis deformation of the C-V curves is dominated by three different trap types. First, interface acceptor-like defects located close to the conduction band can follow the small-signal frequency. Slower acceptor-like border traps with trap levels both close to the conduction band and in the middle of the band gap are however responsible for the increase of trapped negative charge with increasing gate voltage. Finally, we assume the presence of a fixed positive charge.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] B. J. Baliga, "Trends in Power Semiconductor Devices", IEEE Transactions on Electron Devices, Vol. 43, no. 10, pp.1717-1731 (1996)

DOI: 10.1109/16.536818

Google Scholar

[2] R. Singh, "Reliability and performance limitations in SiC power devices", Microelectronics Reliability, Vol. 46, no. 5-6, pp.713-730 (2006)

DOI: 10.1016/j.microrel.2005.10.013

Google Scholar

[3] C. Yang, Z. Gu, Z. Yin, F. Qin and D. Wang, "Interfacial traps and mobile ions induced flatband voltage instability in 4H-SiC MOS capacitors under bias temperature stress", Journal of Physics D: Applied Physics, Vol. 52, no. 40, p.405103 (2019)

DOI: 10.1088/1361-6463/ab2faf

Google Scholar

[4] E. X. Zhang, C. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, S. Dhar, S.-H. Ryu, X. Shen, and S. T. Pantelides, "Bias-Temperature Instabilities in 4H-SiC Metal-Oxide-Semiconductor Capacitors", IEEE Transactions on Device and Materials Reliability, Vol. 12, no. 2, pp.391-398 (2012)

DOI: 10.1109/tdmr.2012.2188404

Google Scholar

[5] Q. J. Sun, Y. M. Zhang, Q. W. Song, X. Y. Tang, Y. M. Zhang, C. Z. Li, and Y. M Zhang, "Near-interface oxide traps in 4H-SiC MOS structures fabricated with and without annealing in NO", Chinese Physics B, Vol. 26, no. 12, p.127701 (2017)

DOI: 10.1088/1674-1056/26/12/127701

Google Scholar

[6] H. Yoshioka, T. Nakamura, and T. Kimoto, "Accurate evaluation of interface state density in SiC metal-oxide-semiconductor structures using surface potential based on depletion capacitance", Journal of Applied Physics, Vol. 111, no. 1, p.014502 (2012)

DOI: 10.1063/1.3673572

Google Scholar

[7] A. Chanthaphan, T. Hosoi, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe, "Investigation of unusual mobile ion effects in thermally grown SiO2 on 4H-SiC(0001) at high temperatures", Applied Physics Letters, Vol. 100, p.252103 (2012)

DOI: 10.1063/1.4729780

Google Scholar

[8] H. A. Moghadam, S. Dimitrijev, J. Han, and D. Haasmann, "Active defects in MOS devices on 4H-SiC: A critical review", Microelectronics Reliability, Vol. 60, pp.1-9 (2016)

DOI: 10.1016/j.microrel.2016.02.006

Google Scholar

[9] R. Arora, J. Rozen, D. M. Fleetwood, K. F. Galloway, C. X. Zhang, J. Han, S. Dimitrijev, F. Kong, L. C. Feldman, S. T. Pantelides, and R. D. Schrimpf, "Charge Trapping Properties of 3C- and 4H-SiC MOS Capacitors With Nitrided Gate Oxides", IEEE Transactions on Nuclear Science, Vol. 56, no. 6, pp.3185-3191 (2009)

DOI: 10.1109/tns.2009.2031604

Google Scholar

[10] Y. Fujino, and K, Kita, "Estimation of near-interface oxide trap density at SiO2/SiC metal-oxidesemiconductor interfaces by transient capacitance measurements at various temperatures", Journal of Applied Physics, Vol. 120, no. 8, p.085710 (2016)

DOI: 10.1063/1.4961871

Google Scholar

[11] X.-M. Chen, B.-B. Shi, X. Li, H.-Y. Fan, C.-Z. Li, X.-C. Deng, H.-H. Luo, Y.-D. Wu, and B. Zhang, "Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs", Chinese Physical Society and IOP Publishing, Vol. 30, no. 4, p.048504 (2021)

DOI: 10.1088/1674-1056/abd391

Google Scholar

[12] P. Fiorenza, F. Iucolano, M. Saggio, and F. Roccaforte, "Oxide Traps Probed by Transient Capacitance Measurements on Lateral SiO2/4H-SiC MOSFETs", Materials Science Forum, Vol. 924, pp.285-288 (2018)

DOI: 10.4028/www.scientific.net/msf.924.285

Google Scholar

[13] G. Y. Chung, C. C. Tin, J. H. Won, J. R. Williams, K. McDonald, R. A. Weller, and L. C. Feldman, "Interface state densities near the conduction band edge in n-type 4H-and 6H-SiC", IEEE Aerospace Conference, Vol. 5, pp.409-413 (2000)[14] D. Peters, T. Aichinger, T. Basler, G. Rescher, K. Puschkarsky, H. Reisinger, "Investigation of threshold voltage stability of SiC MOSFETs", 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp.40-43 (2018)

DOI: 10.1109/ispsd.2018.8393597

Google Scholar

[15] Y. J. He, X. Y. Tang, Y. F. Jia, C. Q. Zhou, and Y. M. Zhang, "Temperature-dependent effect of near-interface traps on SiC MOS capacitance", Chinese Physics Letters, Vol. 35, no. 10, p.107301 (2018)

DOI: 10.1088/0256-307x/35/10/107301

Google Scholar

[16] I. Matacena, L. Maresca, M. Riccio, A. Irace, G. Breglio,and S. Daliento, "SiC MOSFET C-V Curves Analysis with Floating Drain Configuration", Materials Science Forum, Vol. 1062, pp.663-668 (2022)

DOI: 10.4028/p-96q66n

Google Scholar

[17] L. Maresca, I. Matacena, M. Riccio, A. Irace, G. Breglio, and S. Daliento, "Influence of the SiC/SiO2 SiC MOSFET interface traps distribution on C-V measurements evaluated by TCAD simulations", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, no. 2, pp.2171-2179 (2021)

DOI: 10.1109/jestpe.2019.2940143

Google Scholar

[18] Y. Cai, H. Xu, P. Sun, Z. Zhao and Z. Chen, "Influence of the Interface Traps Distribution on IV and CV Characteristics of SiC MOSFET Evaluated by TCAD Simulations", IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), pp.398-402 (2021)

DOI: 10.1109/wipdaasia51810.2021.9656084

Google Scholar

[19] L. Maresca, I. Matacena, M. Riccio, A. Irace, G. Breglio, and S. Daliento, "TCAD model calibration for the SiC/SiO2 interface trap distribution of a planar SiC MOSFET", IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), pp.1-5 (2020)

DOI: 10.1109/wipdaasia49671.2020.9360298

Google Scholar

[20] https://www.globaltcad.com/. Accessed on: August 24 (2022)

Google Scholar

[21] T. Grasser, "Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities", Microelectronics Reliability, Vol. 52, no. 1, pp.39-70 (2012)

DOI: 10.1016/j.microrel.2011.09.002

Google Scholar

[22] C. Schleich, J. Berens, G. Rzepa, G. Pobegen, G. Rescher, S. Tyaginov, T. Grasser, M. Waltl, "Physical Modeling of Bias Temperature Instabilities in SiC MOSFETs", 2019 IEEE International Electron Devices Meeting (IEDM), p.20.5.1-20.5.4 (2019)

DOI: 10.1109/iedm19573.2019.8993446

Google Scholar

[23] S. E. Tyaginov, M. Jech, G. Rzepa, A. Grill, A.-M. El-Sayed, G. Pobegen, A. Makarov, T. Grasser, "Border Trap Based Modeling of SiC Transistor Transfer Characteristics", 2018 International Integrated Reliability Workshop (IIRW), Oct. 2018, pp.1-5 (2018)

DOI: 10.1109/iirw.2018.8727083

Google Scholar

[24] K. Fukuda, J. Hattori, H. Asai, M. Shimizu, and T. Hashizume, "Simulation of GaN MOS capacitance with frequency dispersion and hysteresis", International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp.233-236 (2017)

DOI: 10.23919/sispad.2017.8085307

Google Scholar

[25] N. Shiono and C. Hashimoto, "Threshold-Voltage Instability of n-Channel MOSFET's under Bias-Temperature Aging", IEEE Transactions on Electron Devices, Vol. 29, no. 3, pp.361-368 (1982)

DOI: 10.1109/t-ed.1982.20710

Google Scholar