The Influence of Extended Defects in 4H-SiC Epitaxial Layers on Gate Oxide Performance and Reliability

Article Preview

Abstract:

For the ongoing commercialization of power devices based on 4H-SiC, increasing the yield and improving the reliability of these devices is becoming more and more important. In this investigation, gate oxide on 4H-SiC was examined by time-zero dielectric breakdown (TZDB) and constant current stress (CCS) time-dependent dielectric breakdown (TDDB) method in order to get insights into the influence of the epitaxial defects on the gate oxide performance and reliability. For that purpose, MOS capacitors with different gate oxides have been fabricated. Crystal defects in the epitaxial layers have been detected and mapped by ultraviolet photoluminescence (UVPL) and interference contrast (DIC) imaging. The results of the comparison of electrical data and surface mapping data indicate a negative influence on the leakage current behavior for some extended epitaxial defects. Results from TDDB measurement indicated numerous extrinsic defects, which can be traced back to gate oxide processing conditions and defect densities.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1090)

Pages:

127-133

Citation:

Online since:

May 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] B. Hu, X. Lyu, D. Xing, D. Ma, J. Brothers, R. Na and J. Wang, IEEE Energy Conversion Congress and Exposition (ECCE), pp.2420-2427 (2018)

DOI: 10.1109/ecce.2018.8558451

Google Scholar

[2] N. Kondrath and M. Kazimierczuk, Int. J. o. Elect. a. Telec., Vol. 56, Is. 3, pp.231-236 (2010)

Google Scholar

[3] E. Van Brunt, A. Burk, D.J. Lichtenwalner, R. Leonard, S. Sabri, D.A. Gajewski, A. Mackenzie, B. Hull, S. Allen, J.W. Palmer, Proc. Mat. Scie. For. Vol.924, pp.137-142 (2017)

DOI: 10.4028/www.scientific.net/msf.924.137

Google Scholar

[4] K. Suganuma, Wide Bandgap Power Semiconductor Packaging (Woodhead Publishing, 2018), p.155

Google Scholar

[5] K. O. Kim, M. J. Zuo, IEEE Transactions on semiconductor manufacturing, Vol. 18, No.3 (2005)

Google Scholar

[6] P. Olivo, T. N. Nguyen, IEEE Trans. On. Elec. Dev., Vol 38, No. 3, p.527 – 531 (1991)

Google Scholar

[7] M. S. Liang and J. Y. Choi, "Thickness dependence of oxide breakdown under high field and current stress," Appl. Phys. Lett., vol. 50, no. 2, p.104 (1987)

DOI: 10.1063/1.97867

Google Scholar

[8] B. Chen, H. Matsuhata, T. Sekiguchi, K. Ichinoseki, H. Okumura, Acta Materialia 6, p.51 – 58 (2012)

Google Scholar

[9] J. Schoeck, H. Schlichting, T. Erlbacher, B. Kallinger, M. Rommel, A. J. Bauer, Materials Science Forum 924, p.164 – 167 (2018)

DOI: 10.4028/www.scientific.net/msf.924.164

Google Scholar

[10] T. Kimoto and Heiji Watanabe, Applied Physics Express 13, 120101 (2020)

Google Scholar

[11] T. Yamashita, T. Naijo, H. Matsuhata, K. Momose, H. Osawa, H. Okumura, Journal of Crystal Growth, Volume 433, pp.97-104 (2016)

DOI: 10.1016/j.jcrysgro.2015.10.004

Google Scholar

[12] Y.N. Picard, K.X. Liu, R.E. Stahlbush, M.E. Twigg, Journal of Electronic Materials, Vol. 37, No. 5, pp.655-661 (2008)

Google Scholar

[13] R. S. Hemmert, Solid-State Electronics, Vol. 24, pp.511-515 (1981)

Google Scholar

[14] J.A. Cunningham, IEEE Transactions on Semiconductor Manufacturing, Vol.3, No.2 (1990)

Google Scholar

[15] K. Uchida, T. Hiyoshi, T. Nishiguchi, H. Yamamoto, S. Matsukawa, M. Furumai, Y. Mikamura, Materials Science Forum 858, pp.840-843 (2016)

DOI: 10.4028/www.scientific.net/msf.858.840

Google Scholar