Mathematical Model of Shear Stress Transfer at Fiber-Matrix Interface of Composite Material

Article Preview

Abstract:

This paper shows a mathematical model of shear stress transfer at the interface between fiber and matrix composite. The stress transfer is a key parameter determining the quality of fiber-matrix interface, which directly correlates with the composite performance as load-bearing structures. The model is derived from the energy balance approach in prior and post fiber cracking. The debonding process is included in the model by implementing traction-separation law. The results show the developed model can predict the shear stress along with the interface. There are significant differences in shear stress by considering the debonding process compared with conventional models. The debonding process must be regarded to assure an accurate evaluation of the interface quality.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1092)

Pages:

35-43

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Dai, F. Shi, B. Zhang, M. Li, Z. Zhang. Effect of sizing of carbon fiber surface properties and fiber/epoxy interfacial adhesion, Appl. Surf. Sci. 257 (2011) 6980-6985.

DOI: 10.1016/j.apsusc.2011.09.096

Google Scholar

[2] J. K. Kocsis, H. Mahmood, A. Pegoretti, Recent advance in fiber/matrix interphase engineering for polymer composites, Prog. Mater. Sci. 73 (2015) 1-43.

DOI: 10.1016/j.pmatsci.2015.02.003

Google Scholar

[3] L.J. Broutman, B.D. Agarwal, Effect of the interface on the mechanical properties of composites, Rheol. Acta. 13 (1974) 618-626.

DOI: 10.1007/bf01521765

Google Scholar

[4] Q. Wu, M. Li, Y. Gu, S. Wang, L. Yao, Z. Zhang, Effect of sizing on interfacial adhesion of commercial high strength carbon fiber-reinforced resin composites, Polym. Compos. 37 (2016) 254-261.

DOI: 10.1002/pc.23176

Google Scholar

[5] B. A. Budiman, K. Takahashi, K. Inaba and K. Kishimoto, A new method of evaluating interfacial properties of a fiber/matrix composite, J. Compos. Mater. 49(4) (2015) 465-475.

DOI: 10.1177/0021998314521061

Google Scholar

[6] B. A. Budiman, K. Takahashi, K. Inaba and K. Kishimoto, Evaluation of interfacial strength between fiber and matrix based on cohesive zone modeling, Compos. - A: Appl. Sci. Manuf. 90 (2016) 211-217.

DOI: 10.1016/j.compositesa.2016.06.024

Google Scholar

[7] B. A. Budiman, F. Adziman, P. L. Sambegoro, I. P. Nurprasetio, R. Ilhamsyah and M. Aziz, The role of interfacial rigidity to crack propagation path in fiber reinforced polymer composite, Fibers Polym. 19(9) (2018) 1980-1988.

DOI: 10.1007/s12221-018-8194-z

Google Scholar

[8] H. D. Wagner, J. A. Nairn, M. Detassis, Toughness of interfaces from initial-matrix debonding in a single fiber composite fragmentation test, Appl. Compos. Mater. 2 (1995) 107-117.

DOI: 10.1007/bf00569253

Google Scholar

[9] S. Kimura, J. Konayagi and H. Kawada, Evaluation of initiation of the interfacial debonding in single-fiber composites (Energy balance method considering an energy dissipation of the plastic deformation), JSME Inter. J., 49 (2006) 451-457.

DOI: 10.1299/jsmea.49.451

Google Scholar

[10] C. T. Chou and L. S. Penn, Chemical bonding and physical interaction by attached chains at the fiber-matrix interface, J. Adhes. 36(2-3) (1991) 125-137.

DOI: 10.1080/00218469108027067

Google Scholar

[11] E. Pisanova and E. Mäder, Acid–base interactions and covalent bonding at a fiber–matrix interface: contribution to the work of adhesion and measured adhesion strength, J. Adhes. Sci. Technol. 14(3) (2000) 415-436.

DOI: 10.1163/156856100742681

Google Scholar

[12] B. A. Budiman, F. B. Juangsa, M. Aziz, I. P. Nurprasetio and I. N. Zaini, Experimental verification of interfacial strength effect on the mechanical properties of carbon fiber-epoxy composite. Int. J. Adv. Sci. Eng. Inf. Technol. 7(6) (2017) 2226-31.

DOI: 10.18517/ijaseit.7.6.2781

Google Scholar

[13] I. S. Putra, B. A. Budiman, P. L. Sambegoro, S. P. Santosa, A. I. Mahyuddin, K. Kishimoto, and K. Inaba, The influence of fiber surface profile and roughness to fiber–matrix interfacial properties. J. Compos. Mater., 54(11) (2020) 1441-1452.

DOI: 10.1177/0021998319883418

Google Scholar

[14] D. J. Eyckens, B. Demir, J. D. Randall, T. R. Gengenbach, L. Servinis, T. R. Walsh and L. C. Henderson, Using molecular entanglement as a strategy to enhance carbon fiber-epoxy composite interfaces. Compos. Sci. Technol., 196 (2020) 108225.

DOI: 10.1016/j.compscitech.2020.108225

Google Scholar

[15] B. A. Budiman, P. Sambegoro and P. N. Halimah, Graphite surface profile with different polishing treatment, In Journal of Physics: Conference Series, IOP Publishing, 1402(5) (2019) 055094.

DOI: 10.1088/1742-6596/1402/5/055094

Google Scholar

[16] B. A. Budiman, P. N. Halimah, Interface damage mechanics in fiber reinforced plastic composite–A review. AIP Conference Proceedings, AIP Publishing LLC, 2217(1) (2020) 020002.

DOI: 10.1063/5.0000808

Google Scholar

[17] B. Fiedler and K. Schulte, Photoelastic analysis of fibre reinforced model composite materials, Comp. Sci. Tech. 57 (1997) 859-867.

Google Scholar

[18] F. Zhao, S. Hayes, E. Patterson and F. Jones, Phase-stepping photoelasticity for the measurement of interfacial shear stress in single fibre composites, Comp. Part A, 37 (2006) 216-221.

DOI: 10.1016/j.compositesa.2005.09.021

Google Scholar

[19] E. Flores-Johnson, J. Vazquez-Rodriguez, P. Herrera-Franco and P. Gonzalez-Chi, Photoelastic evaluation of fiber surface-treatments on the interfacial performance of a polyester fiber/epoxy model composite, Comp. Part A, 42 (2011) 1017-1024.

DOI: 10.1016/j.compositesa.2011.04.005

Google Scholar

[20] C. Galiotis, V. Chohan, A. Paipetis and C. Vlartas, Interfacial measurement and fracture characteristics of single and multi-fiber composites by remote laser raman spectroscopy, Fiber, Matrix, and Interface Properties, (1996) 19-33.

DOI: 10.1520/stp38223s

Google Scholar

[21] A. Paipetis, C. Galiotis, Y. Ching Liu and J. A. Nairn, Stress transfer from the matrix to the fibre in a fragmentation test: raman experiments and analytical modeling, J. Comp. Mater., 33 (1996) 377-399.

DOI: 10.1177/002199839903300404

Google Scholar

[22] Y. Huang and R. J. Young, Analysis of the fragmentation test for carbon fibre/epoxy model composites by means of raman spectroscopy, Compos. Sci. Technol., 52 (1994) 505-517.

DOI: 10.1016/0266-3538(94)90033-7

Google Scholar

[23] H.L. Cox, The elasticity and strength of paper and other fibrous materials, Brit. J. Appl. Phys. 3 (1952) 72-78.

Google Scholar

[24] F. Ma and K. Kishimoto, A continuum interface debonding model and application to matrix cracking of composite, JSME Inter. J., 39A (1996) 496-507.

DOI: 10.1299/jsmea1993.39.4_496

Google Scholar

[25] S. Ogihara, Y. Imafuku, R. Yamamoto, Y. Kogo, Direct evaluation of fracture toughness in a carbon fiber, 17th ICCM, Edinburg, 2009.

Google Scholar