[1]
F. Long, A. Zhu, & H. Shi, Recent advances in optical biosensors for environmental monitoring and early warning, Sensors, 13(10) (2013) 13928-13948.
DOI: 10.3390/s131013928
Google Scholar
[2]
B. Pejcic, R. De Marco, & G. Parkinson, The role of biosensors in the detection of emerging infectious diseases, Analyst, 131(10) (2006) 1079-1090.
DOI: 10.1039/b603402k
Google Scholar
[3]
D. R. Thévenot, K. Toth, R. A. Durst, & G. S. Wilson, Electrochemical biosensors: recommended definitions and classification, Biosensors and bioelectronics, 16(1-2) (2001) 121-131.
DOI: 10.1016/s0956-5663(01)00115-4
Google Scholar
[4]
P. J. Vikesland, & K. R. Wigginton, Nanomaterial enabled biosensors for pathogen monitoring-a review, Environmental science & technology, 44(10) (2010) 3656-3669.
DOI: 10.1021/es903704z
Google Scholar
[5]
J. N. Wohlstadter, J. L. Wilbur, G. B. Sigal, H. A. Biebuyck, M. A. Billadeau, L. Dong,... & S. J. Wohlstadter, Carbon nanotube‐based biosensor, Advanced Materials, 15(14) (2003) 1184-1187.
DOI: 10.1002/adma.200304259
Google Scholar
[6]
J. Wang, Carbon‐nanotube based electrochemical biosensors: A review, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 17(1) (2005) 7-14.
DOI: 10.1002/elan.200403113
Google Scholar
[7]
N. Yang, X. Chen, T. Ren, P. Zhang, & D. Yang, Carbon nanotube based biosensors, Sensors and Actuators B: Chemical, 207 (2015) 690-715.
DOI: 10.1016/j.snb.2014.10.040
Google Scholar
[8]
R. B. Onyancha, K. E. Ukhurebor, U. O. Aigbe, O. A. Osibote, H. S. Kusuma, H. Darmokoesoemo, & V. A. Balogun, A systematic review on the detection and monitoring of toxic gases using carbon nanotube-based biosensors, Sensing and Bio-Sensing Research, 34 (2021) 100463.
DOI: 10.1016/j.sbsr.2021.100463
Google Scholar
[9]
S. Xie, W. Li, Z. Pan, B. Chang, & L. Sun, Mechanical and physical properties on carbon nanotube, Journal of Physics and Chemistry of solids, 61(7) (2000) 1153-1158.
DOI: 10.1016/s0022-3697(99)00376-5
Google Scholar
[10]
N. Gupta, S. M. Gupta, & S. K. Sharma, Carbon nanotubes: Synthesis, properties and engineering applications, Carbon Letters, 29(5) (2019) 419-447.
DOI: 10.1007/s42823-019-00068-2
Google Scholar
[11]
Y. R. Poudel, & W. Li, Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review, Materials Today Physics, 7 (2018) 7-34.
DOI: 10.1016/j.mtphys.2018.10.002
Google Scholar
[12]
C. Y. Lin, C. H. Yang, C. W. Chiu, H. C. Chung, S. Y. Lin, & M. F. Lin, Orbital hybridizations and Coulomb couplings of coaxial carbon nanotubes, In Rich Quasiparticle Properties of Low Dimensional Systems. IOP Publishing, (2021).
DOI: 10.1088/978-0-7503-3783-0ch7
Google Scholar
[13]
H. Y. Liu, T. D. H. Nguyen, S. Y. Lin, H. C. Chung, W. B. Li, N. T. T. Tran,... & M. F. Lin, Essential electronic properties of armchair carbon and silicon nanotubes, First-Principles Calculations for Cathode, (2021) 12-1.
DOI: 10.1088/978-0-7503-4685-6ch12
Google Scholar
[14]
L. Mahdavian, M. Monajjemi, & N. Mangkorntong, Sensor response to alcohol and chemical mechanism of carbon nanotube gas sensors, Fullerenes, Nanotubes and Carbon Nanostructures, 17(5) (2009) 484-495.
DOI: 10.1080/15363830903130044
Google Scholar
[15]
M. D. Ganji, & A. Bakhshandeh, Functionalized single-walled carbon nanotubes interacting with glycine amino acid: DFT study, Physica B: Condensed Matter, 406(23) (2011) 4453-4459.
DOI: 10.1016/j.physb.2011.09.006
Google Scholar
[16]
R. Tian, X. Wang, M. Li, H. Hu, R. Chen, F. Liu,... & L. Wan, An efficient route to functionalize singe-walled carbon nanotubes using alcohols, Applied Surface Science, 255(5) (2008) 3294-3299.
DOI: 10.1016/j.apsusc.2008.09.040
Google Scholar
[17]
S. Berber, & A. Oshiyama, Atomic and electronic structure of divacancies in carbon nanotubes, Physical Review B, 77(16) (2008) 165405.
DOI: 10.1103/physrevb.77.165405
Google Scholar
[18]
Y. Ma, J. Ma, Y. Lv, J. Liao, Y. Ji, & H. Bai, Effect of mono vacancy defect on the charge carrier mobility of carbon nanotubes: A case study on (10, 0) tube from first-principles, Superlattices and Microstructures, 99 (2016) 140-144.
DOI: 10.1016/j.spmi.2016.03.031
Google Scholar
[19]
A. Chen, Q. Shao, & Z. Lin, Effects of phosphorus-doping upon the electronic structures of single wall carbon nanotubes, Science in China Series G: Physics, Mechanics and Astronomy, 52(8) (2009) 1139-1145.
DOI: 10.1007/s11433-009-0145-7
Google Scholar
[20]
W. Zhou, J. Vavro, N. M. Nemes, J. E. Fischer, F. Borondics, K. Kamaras, & D. B. Tanner, Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes, Physical Review B, 71(20) (2005) 205423.
DOI: 10.1103/physrevb.71.205423
Google Scholar
[21]
Y. Fujimoto, & S. Saito, Energetics and electronic structures of pyridine-type defects in nitrogen-doped carbon nanotubes, Physica E: Low-dimensional Systems and Nanostructures, 43(3) (2011) 677-680.
DOI: 10.1016/j.physe.2010.07.027
Google Scholar
[22]
L. Qiao, W. T. Zheng, H. Xu, L. Zhang, & Q. Jiang, Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study, The Journal of chemical physics, 126(16) (2007) 164702.
DOI: 10.1063/1.2722750
Google Scholar
[23]
J. A. Talla, First principles modeling of boron-doped carbon nanotube sensors, Physica B: Condensed Matter, 407(6) (2012) 966-970.
DOI: 10.1016/j.physb.2011.12.120
Google Scholar
[24]
K. Wang, C. Shi, N. Zhao, X. Du, & J. Li, First-principles study of the B-or N-doping effects on chemical bonding characteristics between magnesium and single-walled carbon nanotubes, Chemical Physics Letters, 469(1-3) (2009) 145-148.
DOI: 10.1016/j.cplett.2008.12.059
Google Scholar
[25]
O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, & P. Lefin, Doping graphitic and carbon nanotube structures with boron and nitrogen, Science, 266(5191) (1994) 1683-1685.
DOI: 10.1126/science.266.5191.1683
Google Scholar
[26]
B. Hawley, M. Casey, M. A. Virji, K. J. Cummings, A. Johnson, & J. Cox-Ganser, Respiratory symptoms in hospital cleaning staff exposed to a product containing hydrogen peroxide, peracetic acid, and acetic acid, Annals of work exposures and health, 62(1) (2018) 28-40.
DOI: 10.1093/annweh/wxx087
Google Scholar
[27]
K. G. Elhage, St. K. Claire, & S. Daveluy, Acetic acid and the skin: a review of vinegar in dermatology, International Journal of Dermatology, 61(7) (2022) 804-811.
DOI: 10.1111/ijd.15804
Google Scholar
[28]
J. Sekizawa, K. Yasuhara, Y. Suyama, S. Yamanaka, M. Tobe, & M. Nishimura, A simple method for screening assessment of skin and eye irritation, The Journal of toxicological sciences, 19(1) (1994) 25-35.
DOI: 10.2131/jts.19.25
Google Scholar
[29]
L. Ernstgård, A. Iregren, B. Sjögren, & G. Johanson, Acute effects of exposure to vapours of acetic acid in humans, Toxicology letters, 165(1) (2006) 22-30.
DOI: 10.1016/j.toxlet.2006.01.010
Google Scholar
[30]
R. E. Stanton, Hellmann‐Feynman Theorem and Correlation Energies, The Journal of Chemical Physics, 36(5) (1962) 1298-1300.
DOI: 10.1063/1.1732731
Google Scholar
[31]
P. Politzer, & J. S. Murray, The Hellmann-Feynman theorem: a perspective, Journal of molecular modeling, 24(9) (2018) 1-7.
Google Scholar
[32]
H. J. Kim, & R. G. Parr, Integral Hellmann—Feynman Theorem, The Journal of Chemical Physics, 41(9) (1964) 2892-2897.
DOI: 10.1063/1.1726371
Google Scholar
[33]
J. G. Esteve, F. Falceto, & C. G. Canal, Generalization of the Hellmann–Feynman theorem, Physics Letters A, 374(6) (2010) 819-822.
DOI: 10.1016/j.physleta.2009.12.005
Google Scholar
[34]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,... & R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of physics: Condensed matter, 21(39) (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[35]
A. A. Adllan, & A. Dal Corso, Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules, Journal of Physics: Condensed Matter, 23(42) (2011) 425501.
DOI: 10.1088/0953-8984/23/42/425501
Google Scholar
[36]
P. E. Blöchl, Projector augmented-wave method, Physical review B, 50(24) (1994) 17953.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[37]
A. Savin, A. D. Becke, J. Flad, R. Nesper, H. Preuss, & H. G. Von Schnering, A new look at electron localization, Angewandte Chemie International Edition in English, 30(4) (1991) 409-412.
DOI: 10.1002/anie.199104091
Google Scholar
[38]
A. Savin, R. Nesper, S. Wengert, & T. F. Fässler, ELF: The electron localization function, Angewandte Chemie International Edition in English, 36(17) (1997) 1808-1832.
DOI: 10.1002/anie.199718081
Google Scholar
[39]
A. Savin, B. Silvi, & F. Colonna, Topological analysis of the electron localization function applied to delocalized bonds, Canadian journal of chemistry, 74(6) (1996) 1088-1096.
DOI: 10.1139/v96-122
Google Scholar
[40]
K. Koumpouras, & J. A. Larsson, Distinguishing between chemical bonding and physical binding using electron localization function (ELF), Journal of Physics: Condensed Matter, 32(31) (2020) 315502.
DOI: 10.1088/1361-648x/ab7fd8
Google Scholar
[41]
A. A. G. Pido, A. A. Z. Munio, & L. C. C. Ambolode II, Ab Initio Calculations of the Atomic Structure, Stability, and Electronic Properties of (C6H10O5)2 Encapsulation into Hydrogen-Doped Carbon Nanotube, In Nano Hybrids and Composites, Trans Tech Publications Ltd, 38 (2023) 53-62.
DOI: 10.4028/p-3uk80a
Google Scholar
[42]
M. Ouyang, J. L. Huang, C. L. Cheung, & C. M. Lieber, Energy gaps in" metallic" single-walled carbon nanotubes, Science, 292(5517) (2001) 702-705.
DOI: 10.1126/science.1058853
Google Scholar
[43]
K. A. Park, K. Seo, & Y. H. Lee, Adsorption of atomic hydrogen on single-walled carbon nanotubes, The Journal of Physical Chemistry B, 109(18) (2005) 8967-8972.
DOI: 10.1021/jp0500743
Google Scholar
[44]
H. S. Kang, & S. Jeong, Nitrogen doping and chirality of carbon nanotubes, Physical Review B, 70(23) (2004) 233411.
Google Scholar
[45]
C. Zhao, Y. Lu, H. Liu, & L. Chen, First-principles computational investigation of nitrogen-doped carbon nanotubes as anode materials for lithium-ion and potassium-ion batteries, RSC advances, 9(30) (2019) 17299-17307.
DOI: 10.1039/c9ra03235e
Google Scholar
[46]
F. B. de Oliveira, E. N. Lima, M. C. da Silva, A. L. da Rosa, & T. Frauenheim, Exploring charge density distribution and electronic properties of hybrid organic-germanium layers, Physical Chemistry Chemical Physics, 22(38) (2020) 22055-22065.
DOI: 10.1039/d0cp03024d
Google Scholar