First-Principles Insights into the Acetic Acid Sensing Capability of the C39N Armchair Nanotube

Article Preview

Abstract:

In this paper, (5,5) single-walled carbon nanotube was doped by substitutional nitrogen (N) atom forming bridgehead C-N bonds in the resulting C39N armchair nanotube. It was then interacted with acetic acid to investigate its detection capability using first-principles calculations in the context of Density Functional Theory (DFT). As known, DFT is a very efficient and accurate method in calculating the properties of the atoms and molecules, and their interactions. Accordingly, the O-H bond of the acid has not undergone a heterolytic dissociation caused by the weak interaction of the materials. In the valence region of the C39N-acid, the O atoms (2p) are the main causes of additional states as shown in the projected density of states (pDOS). Calculations of the charge density difference revealed the occurrence of charge redistribution and nonuniform charge transfer between the acid and the sidewalls of the C39N. Further topological investigation of the system revealed no localized electrons between the interaction points indicating a physical binding mechanism. These electronic responses have shown the biosensing ability of C39N to detect and capture acetic acid.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1092)

Pages:

93-100

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Long, A. Zhu, & H. Shi, Recent advances in optical biosensors for environmental monitoring and early warning, Sensors, 13(10) (2013) 13928-13948.

DOI: 10.3390/s131013928

Google Scholar

[2] B. Pejcic, R. De Marco, & G. Parkinson, The role of biosensors in the detection of emerging infectious diseases, Analyst, 131(10) (2006) 1079-1090.

DOI: 10.1039/b603402k

Google Scholar

[3] D. R. Thévenot, K. Toth, R. A. Durst, & G. S. Wilson, Electrochemical biosensors: recommended definitions and classification, Biosensors and bioelectronics, 16(1-2) (2001) 121-131.

DOI: 10.1016/s0956-5663(01)00115-4

Google Scholar

[4] P. J. Vikesland, & K. R. Wigginton, Nanomaterial enabled biosensors for pathogen monitoring-a review, Environmental science & technology, 44(10) (2010) 3656-3669.

DOI: 10.1021/es903704z

Google Scholar

[5] J. N. Wohlstadter, J. L. Wilbur, G. B. Sigal, H. A. Biebuyck, M. A. Billadeau, L. Dong,... & S. J. Wohlstadter, Carbon nanotube‐based biosensor, Advanced Materials, 15(14) (2003) 1184-1187.

DOI: 10.1002/adma.200304259

Google Scholar

[6] J. Wang, Carbon‐nanotube based electrochemical biosensors: A review, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 17(1) (2005) 7-14.

DOI: 10.1002/elan.200403113

Google Scholar

[7] N. Yang, X. Chen, T. Ren, P. Zhang, & D. Yang, Carbon nanotube based biosensors, Sensors and Actuators B: Chemical, 207 (2015) 690-715.

DOI: 10.1016/j.snb.2014.10.040

Google Scholar

[8] R. B. Onyancha, K. E. Ukhurebor, U. O. Aigbe, O. A. Osibote, H. S. Kusuma, H. Darmokoesoemo, & V. A. Balogun, A systematic review on the detection and monitoring of toxic gases using carbon nanotube-based biosensors, Sensing and Bio-Sensing Research, 34 (2021) 100463.

DOI: 10.1016/j.sbsr.2021.100463

Google Scholar

[9] S. Xie, W. Li, Z. Pan, B. Chang, & L. Sun, Mechanical and physical properties on carbon nanotube, Journal of Physics and Chemistry of solids, 61(7) (2000) 1153-1158.

DOI: 10.1016/s0022-3697(99)00376-5

Google Scholar

[10] N. Gupta, S. M. Gupta, & S. K. Sharma, Carbon nanotubes: Synthesis, properties and engineering applications, Carbon Letters, 29(5) (2019) 419-447.

DOI: 10.1007/s42823-019-00068-2

Google Scholar

[11] Y. R. Poudel, & W. Li, Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review, Materials Today Physics, 7 (2018) 7-34.

DOI: 10.1016/j.mtphys.2018.10.002

Google Scholar

[12] C. Y. Lin, C. H. Yang, C. W. Chiu, H. C. Chung, S. Y. Lin, & M. F. Lin, Orbital hybridizations and Coulomb couplings of coaxial carbon nanotubes, In Rich Quasiparticle Properties of Low Dimensional Systems. IOP Publishing, (2021).

DOI: 10.1088/978-0-7503-3783-0ch7

Google Scholar

[13] H. Y. Liu, T. D. H. Nguyen, S. Y. Lin, H. C. Chung, W. B. Li, N. T. T. Tran,... & M. F. Lin, Essential electronic properties of armchair carbon and silicon nanotubes, First-Principles Calculations for Cathode, (2021) 12-1.

DOI: 10.1088/978-0-7503-4685-6ch12

Google Scholar

[14] L. Mahdavian, M. Monajjemi, & N. Mangkorntong, Sensor response to alcohol and chemical mechanism of carbon nanotube gas sensors, Fullerenes, Nanotubes and Carbon Nanostructures, 17(5) (2009) 484-495.

DOI: 10.1080/15363830903130044

Google Scholar

[15] M. D. Ganji, & A. Bakhshandeh, Functionalized single-walled carbon nanotubes interacting with glycine amino acid: DFT study, Physica B: Condensed Matter, 406(23) (2011) 4453-4459.

DOI: 10.1016/j.physb.2011.09.006

Google Scholar

[16] R. Tian, X. Wang, M. Li, H. Hu, R. Chen, F. Liu,... & L. Wan, An efficient route to functionalize singe-walled carbon nanotubes using alcohols, Applied Surface Science, 255(5) (2008) 3294-3299.

DOI: 10.1016/j.apsusc.2008.09.040

Google Scholar

[17] S. Berber, & A. Oshiyama, Atomic and electronic structure of divacancies in carbon nanotubes, Physical Review B, 77(16) (2008) 165405.

DOI: 10.1103/physrevb.77.165405

Google Scholar

[18] Y. Ma, J. Ma, Y. Lv, J. Liao, Y. Ji, & H. Bai, Effect of mono vacancy defect on the charge carrier mobility of carbon nanotubes: A case study on (10, 0) tube from first-principles, Superlattices and Microstructures, 99 (2016) 140-144.

DOI: 10.1016/j.spmi.2016.03.031

Google Scholar

[19] A. Chen, Q. Shao, & Z. Lin, Effects of phosphorus-doping upon the electronic structures of single wall carbon nanotubes, Science in China Series G: Physics, Mechanics and Astronomy, 52(8) (2009) 1139-1145.

DOI: 10.1007/s11433-009-0145-7

Google Scholar

[20] W. Zhou, J. Vavro, N. M. Nemes, J. E. Fischer, F. Borondics, K. Kamaras, & D. B. Tanner, Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes, Physical Review B, 71(20) (2005) 205423.

DOI: 10.1103/physrevb.71.205423

Google Scholar

[21] Y. Fujimoto, & S. Saito, Energetics and electronic structures of pyridine-type defects in nitrogen-doped carbon nanotubes, Physica E: Low-dimensional Systems and Nanostructures, 43(3) (2011) 677-680.

DOI: 10.1016/j.physe.2010.07.027

Google Scholar

[22] L. Qiao, W. T. Zheng, H. Xu, L. Zhang, & Q. Jiang, Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study, The Journal of chemical physics, 126(16) (2007) 164702.

DOI: 10.1063/1.2722750

Google Scholar

[23] J. A. Talla, First principles modeling of boron-doped carbon nanotube sensors, Physica B: Condensed Matter, 407(6) (2012) 966-970.

DOI: 10.1016/j.physb.2011.12.120

Google Scholar

[24] K. Wang, C. Shi, N. Zhao, X. Du, & J. Li, First-principles study of the B-or N-doping effects on chemical bonding characteristics between magnesium and single-walled carbon nanotubes, Chemical Physics Letters, 469(1-3) (2009) 145-148.

DOI: 10.1016/j.cplett.2008.12.059

Google Scholar

[25] O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, & P. Lefin, Doping graphitic and carbon nanotube structures with boron and nitrogen, Science, 266(5191) (1994) 1683-1685.

DOI: 10.1126/science.266.5191.1683

Google Scholar

[26] B. Hawley, M. Casey, M. A. Virji, K. J. Cummings, A. Johnson, & J. Cox-Ganser, Respiratory symptoms in hospital cleaning staff exposed to a product containing hydrogen peroxide, peracetic acid, and acetic acid, Annals of work exposures and health, 62(1) (2018) 28-40.

DOI: 10.1093/annweh/wxx087

Google Scholar

[27] K. G. Elhage, St. K. Claire, & S. Daveluy, Acetic acid and the skin: a review of vinegar in dermatology, International Journal of Dermatology, 61(7) (2022) 804-811.

DOI: 10.1111/ijd.15804

Google Scholar

[28] J. Sekizawa, K. Yasuhara, Y. Suyama, S. Yamanaka, M. Tobe, & M. Nishimura, A simple method for screening assessment of skin and eye irritation, The Journal of toxicological sciences, 19(1) (1994) 25-35.

DOI: 10.2131/jts.19.25

Google Scholar

[29] L. Ernstgård, A. Iregren, B. Sjögren, & G. Johanson, Acute effects of exposure to vapours of acetic acid in humans, Toxicology letters, 165(1) (2006) 22-30.

DOI: 10.1016/j.toxlet.2006.01.010

Google Scholar

[30] R. E. Stanton, Hellmann‐Feynman Theorem and Correlation Energies, The Journal of Chemical Physics, 36(5) (1962) 1298-1300.

DOI: 10.1063/1.1732731

Google Scholar

[31] P. Politzer, & J. S. Murray, The Hellmann-Feynman theorem: a perspective, Journal of molecular modeling, 24(9) (2018) 1-7.

Google Scholar

[32] H. J. Kim, & R. G. Parr, Integral Hellmann—Feynman Theorem, The Journal of Chemical Physics, 41(9) (1964) 2892-2897.

DOI: 10.1063/1.1726371

Google Scholar

[33] J. G. Esteve, F. Falceto, & C. G. Canal, Generalization of the Hellmann–Feynman theorem, Physics Letters A, 374(6) (2010) 819-822.

DOI: 10.1016/j.physleta.2009.12.005

Google Scholar

[34] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,... & R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of physics: Condensed matter, 21(39) (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[35] A. A. Adllan, & A. Dal Corso, Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules, Journal of Physics: Condensed Matter, 23(42) (2011) 425501.

DOI: 10.1088/0953-8984/23/42/425501

Google Scholar

[36] P. E. Blöchl, Projector augmented-wave method, Physical review B, 50(24) (1994) 17953.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[37] A. Savin, A. D. Becke, J. Flad, R. Nesper, H. Preuss, & H. G. Von Schnering, A new look at electron localization, Angewandte Chemie International Edition in English, 30(4) (1991) 409-412.

DOI: 10.1002/anie.199104091

Google Scholar

[38] A. Savin, R. Nesper, S. Wengert, & T. F. Fässler, ELF: The electron localization function, Angewandte Chemie International Edition in English, 36(17) (1997) 1808-1832.

DOI: 10.1002/anie.199718081

Google Scholar

[39] A. Savin, B. Silvi, & F. Colonna, Topological analysis of the electron localization function applied to delocalized bonds, Canadian journal of chemistry, 74(6) (1996) 1088-1096.

DOI: 10.1139/v96-122

Google Scholar

[40] K. Koumpouras, & J. A. Larsson, Distinguishing between chemical bonding and physical binding using electron localization function (ELF), Journal of Physics: Condensed Matter, 32(31) (2020) 315502.

DOI: 10.1088/1361-648x/ab7fd8

Google Scholar

[41] A. A. G. Pido, A. A. Z. Munio, & L. C. C. Ambolode II, Ab Initio Calculations of the Atomic Structure, Stability, and Electronic Properties of (C6H10O5)2 Encapsulation into Hydrogen-Doped Carbon Nanotube, In Nano Hybrids and Composites, Trans Tech Publications Ltd, 38 (2023) 53-62.

DOI: 10.4028/p-3uk80a

Google Scholar

[42] M. Ouyang, J. L. Huang, C. L. Cheung, & C. M. Lieber, Energy gaps in" metallic" single-walled carbon nanotubes, Science, 292(5517) (2001) 702-705.

DOI: 10.1126/science.1058853

Google Scholar

[43] K. A. Park, K. Seo, & Y. H. Lee, Adsorption of atomic hydrogen on single-walled carbon nanotubes, The Journal of Physical Chemistry B, 109(18) (2005) 8967-8972.

DOI: 10.1021/jp0500743

Google Scholar

[44] H. S. Kang, & S. Jeong, Nitrogen doping and chirality of carbon nanotubes, Physical Review B, 70(23) (2004) 233411.

Google Scholar

[45] C. Zhao, Y. Lu, H. Liu, & L. Chen, First-principles computational investigation of nitrogen-doped carbon nanotubes as anode materials for lithium-ion and potassium-ion batteries, RSC advances, 9(30) (2019) 17299-17307.

DOI: 10.1039/c9ra03235e

Google Scholar

[46] F. B. de Oliveira, E. N. Lima, M. C. da Silva, A. L. da Rosa, & T. Frauenheim, Exploring charge density distribution and electronic properties of hybrid organic-germanium layers, Physical Chemistry Chemical Physics, 22(38) (2020) 22055-22065.

DOI: 10.1039/d0cp03024d

Google Scholar