Study on the Effect of Hydrogen in Argon-Nitrogen Shielding Gas on Pitting Corrosion for Austenitic Stainless Steel by GTA Welding Process

Article Preview

Abstract:

The addition of hydrogen in shielding gas has been found to contribute to increasing the productivity of gas tungsten arc (GTA) welding compared to the processes using argon-nitrogen shielding gas. In this report, the GTA welding joints of AISI 304 stainless steel with Ar-N2 and Ar-N2-H2 addition were fabricated. The microstructure and pitting corrosion resistance were studied in this work. The corrosion characterisation of welds metal was investigated by a potentiodynamic method in NaCl solution. It was found that H2 addition also had effects on delta-ferrite microstructures and corrosion behaviour. Increasing hydrogen in argon-nitrogen shielding gas increased the delta-ferrite content and improved pitting corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1101)

Pages:

79-86

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Özyürek, An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel, Materials & design, 29 (2008) 597-603.

DOI: 10.1016/j.matdes.2007.03.008

Google Scholar

[2] R. Unnikrishnan, K.S.N. Satish Idury, T.P. Ismail, A. Bhadauria, S.K. Shekhawat, R.K. Khatirkar, S.G. Sapate, Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments, Materials Characterization, 93 (2014) 10-23.

DOI: 10.1016/j.matchar.2014.03.013

Google Scholar

[3] S. Trigwell, G. Selvaduray, Effects of welding on the passive oxide film of electropolished 316L stainless steel, Journal of Materials Processing Technology, 166 (2005) 30-43.

DOI: 10.1016/j.jmatprotec.2004.07.091

Google Scholar

[4] C. Doerr, J.-Y. Kim, P. Singh, J.J. Wall, L.J. Jacobs, Evaluation of sensitization in stainless steel 304 and 304L using nonlinear Rayleigh waves, NDT & E International, 88 (2017) 17-23.

DOI: 10.1016/j.ndteint.2017.02.007

Google Scholar

[5] A.I. Muñoz, J.G. Antón, J. Guiñón, V.P. Herranz, Effect of nitrogen in argon as a shielding gas on tungsten inert gas welds of duplex stainless steels, Corrosion, 61 (2005) 693-705.

DOI: 10.5006/1.3278204

Google Scholar

[6] H.-Y. Huang, Effects of shielding gas composition and activating flux on GTAW weldments, Materials & design, 30 (2009) 2404-2409.

DOI: 10.1016/j.matdes.2008.10.024

Google Scholar

[7] Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, C. Zhou, Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint, Applied Surface Science, 404 (2017) 110-128.

DOI: 10.1016/j.apsusc.2017.01.252

Google Scholar

[8] P. Kah, J. Martikainen, Influence of shielding gases in the welding of metals, The International Journal of Advanced Manufacturing Technology, 64 (2013) 1411-1421.

DOI: 10.1007/s00170-012-4111-6

Google Scholar

[9] H. Tsuge, Y. Tarutani, T. Kudo, The effect of nitrogen on the localized corrosion resistance of duplex stainless steel simulated weldments, Corrosion, 44 (1988) 305-314.

DOI: 10.5006/1.3583942

Google Scholar

[10] W. Chuaiphan, L. Srijaroenpramong, Effect of hydrogen in argon shielding gas for welding stainless steel grade SUS 201 by GTA welding process, Journal of Advanced Joining Processes, 1 (2020) 100016.

DOI: 10.1016/j.jajp.2020.100016

Google Scholar

[11] A. Forgas Júnior, J. Otubo, R. Magnabosco, Ferrite quantification methodologies for duplex stainless steel, Journal of Aerospace Technology and Management, 8 (2016) 357-362.

DOI: 10.5028/jatm.v8i3.653

Google Scholar

[12] ASTM Standard D1141-98, Standard Practice for Preparation of Substitute Ocean Water, ASTM International, West Conshohocken, PA, 2021.

Google Scholar

[13] T. Liptáková, M. Lovíšek, A. Alaskari, B. Hadzima, Surface state effect of welded stainless steels on corrosion behavior, Acta Metallurgica Slovaca, 22 (2016) 44-51.

DOI: 10.12776/ams.v22i1.627

Google Scholar

[14] M. Somervuori, L.S. Johansson, M.H. Heinonen, D. Van Hoecke, N. Akdut, H. Hänninen, Characterisation and corrosion of spot welds of austenitic stainless steels, Materials and Corrosion, 55 (2004) 421-436.

DOI: 10.1002/maco.200303753

Google Scholar

[15] J. Łabanowski, M. Głowacka, Heat tint colours on stainless steel and welded joints, Welding International, 25 (2011) 509-512.

DOI: 10.1080/09507116.2010.540837

Google Scholar

[16] J. Tusek, M. Suban, Experimental research of the effect of hydrogen in argon as a shielding gas in arc welding of high-alloy stainless steel, International Journal of Hydrogen Energy, 25 (2000) 369-376.

DOI: 10.1016/s0360-3199(99)00033-6

Google Scholar

[17] N. Anbarasan, S. Jerome, N. Arivazhagan, Argon and argon-hydrogen shielding gas effects on the laves phase formation and corrosion behavior of Inconel 718 gas tungsten arc welds, Journal of Materials Processing Technology, 263 (2019) 374-384.

DOI: 10.1016/j.jmatprotec.2018.07.038

Google Scholar

[18] N. Stenbacka, On arc efficiency in gas tungsten arc welding, Soldagem & Inspeção, 18 (2013) 380-390.

DOI: 10.1590/s0104-92242013000400010

Google Scholar

[19] B.-Y. Kang, Y.K. Prasad, M.-J. Kang, H. Kim, I.S. Kim, The effect of alternate supply of shielding gases in austenite stainless steel GTA welding, Journal of Materials Processing Technology, 209 (2009) 4722-4727.

DOI: 10.1016/j.jmatprotec.2008.11.035

Google Scholar

[20] A.V. Bansod, A.P. Patil, A.P. Moon, S. Shukla, Microstructural and electrochemical evaluation of fusion welded low-nickel and 304 SS at different heat input, Journal of Materials Engineering and Performance, 26 (2017) 5847-5863.

DOI: 10.1007/s11665-017-3054-3

Google Scholar

[21] W. Jiang, B. Wang, J. Gong, S. Tu, Finite element analysis of the effect of welding heat input and layer number on residual stress in repair welds for a stainless steel clad plate, Materials & design, 32 (2011) 2851-2857.

DOI: 10.1016/j.matdes.2010.12.037

Google Scholar

[22] A. Murphy, Thermal plasmas in gas mixtures, Journal of Physics D: Applied Physics, 34 (2001) R151.

Google Scholar

[23] A. Durgutlu, Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel, Materials & design, 25 (2004) 19-23.

DOI: 10.1016/j.matdes.2003.07.004

Google Scholar

[24] J.C. Lippold, W.F. Savage, Solidification of austenitic stainless steel weldments: Part III--the effect of solidification behavior on hot cracking susceptibility, WELDING J., 61 (1982) 388.

Google Scholar

[25] S. Sam, C.R. Das, V. Ramasubbu, S.K. Albert, A.K. Bhaduri, T. Jayakumar, E. Rajendra Kumar, Delta ferrite in the weld metal of reduced activation ferritic martensitic steel, Journal of Nuclear Materials, 455 (2014) 343-348.

DOI: 10.1016/j.jnucmat.2014.07.008

Google Scholar

[26] W. Chuaiphan, L. Srijaroenpramong, Optimization of TIG welding parameter in dissimilar joints of low nickel stainless steel AISI 205 and AISI 216, Journal of Manufacturing Processes, 58 (2020) 163-178.

DOI: 10.1016/j.jmapro.2020.07.052

Google Scholar

[27] W. Chuaiphan, L. Srijaroenpramong, Microstructure, mechanical properties and pitting corrosion of TIG weld joints alternative low-cost austenitic stainless steel grade 216, Journal of Advanced Joining Processes, 2 (2020) 100027.

DOI: 10.1016/j.jajp.2020.100027

Google Scholar

[28] S. Kumar, A.S. Shahi, Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints, Materials & design, 32 (2011) 3617-3623.

DOI: 10.1016/j.matdes.2011.02.017

Google Scholar

[29] A.V. Bansod, S. Shukla, A.P. Patil, Microstructural, mechanical and intergranular corrosion behavior of cold work and thermal ageing of low nickel austenitic stainless steel, Materials Research Express, 6 (2019) 056508.

DOI: 10.1088/2053-1591/aad508

Google Scholar