[1]
J. Rendón, M. Olsson, Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods, Wear 267 (2009) 2055-2061.
DOI: 10.1016/j.wear.2009.08.005
Google Scholar
[2]
P.E. Grobler, R.J. Mostert, Experience in the laboratory and commercial development of abrasion-corrosion resistant steels for the mining industry, Wear 135 (1990) 339-354.
DOI: 10.1016/0043-1648(90)90035-9
Google Scholar
[3]
P. Tao, X. Zhang, G. Mi, C. Wang, Research on fiber laser welding formation, microstructure, and mechanical properties of 7.5 mm 304 stainless steel, J. Mater. Res. Technol. 24 (2023) 236-249.
DOI: 10.1016/j.jmrt.2023.02.200
Google Scholar
[4]
O. Tuncel, H. Aydin, K. Davut, Effect of heat input on HAZ softening in fiber laser welding of 22MnB5 steel, Opt. Laser Technol. 164 (2023) 109560.
DOI: 10.1016/j.optlastec.2023.109560
Google Scholar
[5]
Z. Lei, J. Zou, D. Wang, Z. Guo, R. Bai, H. Jiang, C. Yan, Finite-element inverse analysis of residual stress for laser welding based on a contour method, Opt. Laser Technol. 129 (2020) 106289.
DOI: 10.1016/j.optlastec.2020.106289
Google Scholar
[6]
P.S. Ghosh, A. Sen, S. Chattopadhyaya, S. Sharma, J.S. Chohan, R. Kumar, S. Singh, A. Joshi, Numerical investigation of thermal residual stress distribution for the sustainability of laser welded joints of dissimilar materials, Mater. Today: Proc. 68 (2022) 16-21.
DOI: 10.1016/j.matpr.2022.11.097
Google Scholar
[7]
F.C. Neto, M. Pereira, L.E. dos Santos Paes, M.R. Viotti, M.C. Fredel, Reducing processing-induced residual stresses in SAE 4140 steels laser welded using modulated power emission, Opt. Laser Technol. 140 (2021) 107032.
DOI: 10.1016/j.optlastec.2021.107032
Google Scholar
[8]
Z. Guo, R. Bai, Z. Lei, H. Jiang, J. Zou, C. Yan, Experimental and numerical investigation on ultimate strength of laser-welded stiffened plates considering welding deformation and residual stresses, Ocean Eng. 234 (2021) 109239.
DOI: 10.1016/j.oceaneng.2021.109239
Google Scholar
[9]
J.M. Costa, J.T.B. Pires, F. Antunes, J.P. Nobre, L.P. Borrego, Residual stresses analysis of ND-YAG laser welded joints, Eng. Fail. Anal. 17 (2010) 28-37.
DOI: 10.1016/j.engfailanal.2008.11.001
Google Scholar
[10]
A.S. Elmesalamy, H. Abdolvand, J.N. Walsh, J.A. Francis, W. Suder, S. Williams, L. Li, Measurement and modelling of the residual stresses in autogenous and narrow gap laser welded AISI grade 316L stainless steel plates, Int. J. Press. Vessel. 147 (2016) 64-78.
DOI: 10.1016/j.ijpvp.2016.09.007
Google Scholar
[11]
B. Kumar, S. Bag, S. Mahadevan, C.P. Paul, C.R. Das, K.S. Bindra, On the interaction of microstructural morphology with residual stress in fiber laser welding of austenitic stainless steel, CIRP J. Manuf. Sci. Technol. 33 (2021) 158-175.
DOI: 10.1016/j.cirpj.2021.03.009
Google Scholar
[12]
S. Yan, Z. Meng, B. Chen, C. Tan, X. Song, G. Wang, Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel, Opt. Laser Technol. 145 (2022) 107493.
DOI: 10.1016/j.optlastec.2021.107493
Google Scholar