Oxidation and Chromium Volatilisation of AISI 430 Stainless Steel in O2-H2O and Ar-CO2-H2O at 800°C

Article Preview

Abstract:

To investigate the behaviour of oxidation and chromium volatilisation, AISI 430 stainless steel was oxidised in O2-H2O and Ar-CO2-H2O atmospheres for 96 h at 800°C with varying water vapour content. In the O2-H2O environment, the volatilisation rate of Cr and Mn increased as the water vapour content increased from 5% to 20%. In the case of Ar-CO2-H2O conditions, the presence of water vapour in the Ar-20%CO2 environment reduced the oxidation rates of the steel. However, increasing the H2O content in Ar-20%CO2 had an insignificant effect on the oxidation rate. Water vapour was found to accelerate the volatilisation rate of Cr and Mn. Breakaway oxidation occurred in Ar-20%CO2-40%H2O, resulting in the highest volatilisation rates of Cr and Mn.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1101)

Pages:

71-78

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications, Solid State Ionics, 152 (2002) 405-410.

DOI: 10.1016/s0167-2738(02)00349-1

Google Scholar

[2] J. Larminie, A. Dicks, M.S. McDonald, Fuel cell systems explained, J. Wiley Chichester, UK, 2003.

Google Scholar

[3] K. Huang, J.B. Goodenough, Solid Oxide Fuel Cell Technology: Principles, performance and operations, Woodhead Publishing Limited, Cambridge, UK, 2009.

Google Scholar

[4] Z.G. Yang, J.W. Stevenson, P. Singh, Solid oxide fuel cells, Pacific Northwest National Laboratory (PNNL), Richland, WA (US), 2003.

DOI: 10.2172/965697

Google Scholar

[5] Solid Oxide Fuel Cells: Materials Properties and Performance

Google Scholar

[6] S. Chandra-ambhorn, T. Thublaor, P. Wiman, High temperature oxidation of AISI 430 stainless steel in Ar-H2O at 800 ºC, Corrosion Science, (2020) 108489.

DOI: 10.1016/j.corsci.2020.108489

Google Scholar

[7] P. Promdirek, G. Lothongkhum, S. Chandra‐ambhorn, Y. Wouters, A. Galerie, Behaviour of ferritic stainless steels subjected to dry biogas atmospheres at high temperatures, Materials and Corrosion, 62 (2011) 616-622.

DOI: 10.1002/maco.201005878

Google Scholar

[8] K. Chouhan, S. Sinha, S. Kumar, S. Kumar, Simulation of steam reforming of biogas in an industrial reformer for hydrogen production, International Journal of Hydrogen Energy, 46 (2021) 26809-26824.

DOI: 10.1016/j.ijhydene.2021.05.152

Google Scholar

[9] Y. Unpaprom, T. Pimpimol, K. Whangchai, R. Ramaraj, Sustainability assessment of water hyacinth with swine dung for biogas production, methane enhancement, and biofertilizer, Biomass Conversion and Biorefinery, 11 (2021) 849-860.

DOI: 10.1007/s13399-020-00850-7

Google Scholar

[10] X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties, Solid State Ionics, 176 (2005) 425-433.

DOI: 10.1016/j.ssi.2004.10.004

Google Scholar

[11] H. Kurokawa, K. Kawamura, T. Maruyama, Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient, Solid State Ionics, 168 (2004) 13-21.

DOI: 10.1016/j.ssi.2004.02.008

Google Scholar

[12] T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Application of Fe–16Cr ferritic alloy to interconnector for a solid oxide fuel cell, Solid State Ionics, 143 (2001) 131-150.

DOI: 10.1016/s0167-2738(01)00863-3

Google Scholar

[13] T. Thublaor, S. Chandra-ambhorn, High temperature oxidation and chromium volatilisation of AISI 430 stainless steel coated by Mn-Co and Mn-Co-Cu oxides for SOFC interconnect application, Corrosion Science, 174 (2020) 108802.

DOI: 10.1016/j.corsci.2020.108802

Google Scholar

[14] T. Thublaor, P. Wiman, T. Siripongsakul, S. Chandra-ambhorn, Development of annealed Mn–Co and Mn–Co–Cu coated AISI 430 stainless steels for SOFC interconnect application, Oxidation of Metals, 96 (2021) 93-103.

DOI: 10.1007/s11085-021-10052-9

Google Scholar

[15] J. Wu, X. Liu, Recent development of SOFC metallic interconnect, Journal of Materials Science and Technology, 26 (2010) 293-305.

DOI: 10.1016/s1005-0302(10)60049-7

Google Scholar

[16] I. Barin, Thermochemical Data of Pure Substances, VCH, Germany, 1995.

Google Scholar

[17] M.J. Monteiro, S.R.J. Saunders, F.C. Rizzo, The Effect of Water Vapour on the Oxidation of High Speed Steel, Kinetics and Scale Adhesion, Oxidation of Metals, 75 (2011) 57-76.

DOI: 10.1007/s11085-010-9220-8

Google Scholar

[18] S. Chandra-ambhorn, P. Saranyachot, T. Thublaor, High temperature oxidation behaviour of Fe–15.7 wt.% Cr–8.5 wt.% Mn in oxygen without and with water vapour at 700 ºC, Corrosion Science, 148 (2019) 39-47.

DOI: 10.1016/j.corsci.2018.11.023

Google Scholar

[19] P. Wiman, A. Muengjai, P. Srihathai, T. Thublaor, T. Siripongsakul, W. Chandra-ambhorn, S. Chandra-ambhorn, Oxidation and scale adhesion of a type 430 stainless steel in Ar–CO2 gas mixtures at 800 °C, High Temperature Corrosion of Materials, (2023)

DOI: 10.1007/s11085-023-10155-5

Google Scholar

[20] E.J. Opila, D.L. Myers, N.S. Jacobson, I.M. Nielsen, D.F. Johnson, J.K. Olminsky, M.D. Allendorf, Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g), The Journal of Physical Chemistry A, 111 (2007) 1971-1980.

DOI: 10.1021/jp0647380

Google Scholar

[21] G.R. Holcomb, Calculation of reactive-evaporation rates of chromia, Oxidation of Metals, 69 (2008) 163-180.

DOI: 10.1007/s11085-008-9091-4

Google Scholar

[22] W. Wongpromrat, H. Thaikan, W. Chandra-ambhorn, S. Chandra-ambhorn, Chromium vaporisation from AISI 441 stainless steel oxidised in humidified oxygen, Oxidation of Metals, 79 (2013) 529-540.

DOI: 10.1007/s11085-013-9379-x

Google Scholar