Microstructural and Thermal Characterization of AZ31 and Ca-modified AZ31 Magnesium Alloys: Insight into Dynamic Recrystallization and Discontinuous Precipitation Phenomena

Article Preview

Abstract:

Magnesium alloys are highly desirable for weight critical applications owing to their high weight to strangth ratio. However, their poor formability at room temperature limits their widespread use in industrial applications. In this study, we invstigate the hot deformation behaviour of AZ31 and AZ31-0.7% Ca magnesium alloys and explore their microstructural and thermal properties. Our findings reveal that dynamic recrystallization during hot deformation leads to successful grain refinement in the AZ31 alloy, resulting in a normal grain size distribution. In contrast, the AZ31-0.7% Ca alloy shows bimodal grain size distribution due to the addition of calcium. Additionally, the number and size of β-Mg17Al12 particles were found to increase with the addition of a small amount of calcium. These particles are responsible for the discontinuous precipitation phenomenon, which strongly influences microstructural changes during hot rolling. Our study provides valuable insights into the dynamic recrystallization and discontinuous precipitation phenomena of magnesium alloys, which can aid in the development of novel alloys with improved formability and mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1103)

Pages:

3-11

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Yang, C. Duan, H. Li, T. Guo, J. Zhang, Effects of minor Ca addition on as-cast microstructure and mechanical properties of Mg–4Y–1.2 Mn–1Zn (wt.%) magnesium alloy, Journal of Alloys and Compounds. 574 (2013)165-173.

DOI: 10.1016/j.jallcom.2013.04.069

Google Scholar

[2] S.M. Masoudpanah, R. Mahmudi, Effects Of Rare-Earth Elements And Ca Additions On The Microstructure And Mechanical Properties Of AZ31 Magnesium Alloy Processed By ECAP, Materials Science and Engineering. A 526.1-2 (2009) 22-30.

DOI: 10.1016/j.msea.2009.08.027

Google Scholar

[3] G. Wu, Y. Fan, H. Gao, C. Zhai, Y.P. Zhu, The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D, Materials Science and Engineering. A 408.1 (2005) 255-263.

DOI: 10.1016/j.msea.2005.08.011

Google Scholar

[4] I.A. Maksoud, H. Ahmed, J. Rödel, Investigation of the Effect of Strain Rate And Temperature on the Deformability And Microstructure Evolution of AZ31 Magnesium Alloy, Materials Science and Engineering. A 504.1-2 (2009) 40-48.

DOI: 10.1016/j.msea.2008.10.033

Google Scholar

[5] B.L. Mordike, T. Ebert, Magnesium: properties—applications—potential, Materials Science and Engineering. A 302.1 (2001) 37-45.

Google Scholar

[6] N. Stanford, M.R. Barnett, Fine grained AZ31 produced by conventional thermo-mechanical processing, Journal of Alloys and Compounds. 466.1-2 (2008) 182-188.

DOI: 10.1016/j.jallcom.2007.11.082

Google Scholar

[7] W.J. Kim, H.T. Jeong, Grain-size strengthening in equal-channel-angular-pressing processed AZ31 Mg alloys with a constant texture, Materials transactions. 46.2 (2005) 251-258.

DOI: 10.2320/matertrans.46.251

Google Scholar

[8] M. Rakshith, P. Seenuvasaperumal, Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy, Journal of Magnesium and Alloys. 9.5 (2021) 1692-1714.

DOI: 10.1016/j.jma.2021.03.019

Google Scholar

[9] M.T. Pérez-Prado, O.A. Ruano, Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding, Scripta materialia. 51.11 (2004) 1093-1097.

DOI: 10.1016/j.scriptamat.2004.07.028

Google Scholar

[10] Q. Yang, A. K. Ghosh, Production of ultrafine-grain microstructure in Mg alloy by alternate biaxial reverse corrugation, Acta materialia. 54.19 (2006) 5147-5158.

DOI: 10.1016/j.actamat.2006.06.045

Google Scholar

[11] K.J. Tam, M.W. Vaughan, L. Shen, M. Knezevic, I. Karaman, G. Proust, Modelling the temperature and texture effects on the deformation mechanisms of magnesium alloy AZ31, International Journal of Mechanical Sciences. 182 (2020)105727.

DOI: 10.1016/j.ijmecsci.2020.105727

Google Scholar

[12] L. Wu, F. Pan, M. Yang, R. Cheng, An investigation of second phases in as-cast AZ31 magnesium alloys with different Sr contents, Journal of Materials Science. 48 (2013) 5456-5469.

DOI: 10.1007/s10853-013-7339-0

Google Scholar

[13] X. Zeng, Y. Wang, W. Ding, A.A. Luo, A.K. Sachdev, Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy, Metallurgical and materials transactions. A 37 (2006) 1333-1341.

DOI: 10.1007/s11661-006-1085-8

Google Scholar

[14] R. Pei, Y. Zou, M. Zubair, D. Wei, T. Al-Samman, Synergistic effect of Y and Ca addition on the texture modification in AZ31B magnesium alloy, Acta Materialia. 233 (2022) 117990.

DOI: 10.1016/j.actamat.2022.117990

Google Scholar

[15] M.R. Barnett, Z. Keshavarz, M.D. Nave, Microstructural features of rolled Mg-3Al-1Zn, Metallurgical and Materials Transactions. A 36 (2005) 1697-1704.

DOI: 10.1007/s11661-005-0033-3

Google Scholar

[16] J.A. Del Valle, M.T. Pérez-Prado, O.A. Ruano, Accumulative roll bonding of a Mg-based AZ61 alloy, Materials Science and Engineering. A410 (2005) 353-357.

DOI: 10.1016/j.msea.2005.08.097

Google Scholar

[17] A. Galiyev, R. Kaibyshev, D. Voronin, Magnesium Alloys and Their Applications, in: K.U. Kainer, ed., Wiley-VCH, Weinheim, Proc. 6th Int. Conf., 2004, pp.266-71.

Google Scholar

[18] T.C. Chang, J.Y. Wang, O. Chia-Ming, S. Lee, Grain refining of magnesium alloy AZ31 by rolling, Journal of Materials Processing Technology. 140.1-3 (2003) 588-591.

DOI: 10.1016/s0924-0136(03)00797-0

Google Scholar

[19] C. Liang, M. Li, H. Peng, Y. Chen, G. Li, Study on TIG Process of AZ31 Magnesium Alloy, Journal of Physics: Conference Series. 2437 (2023) 012057.

DOI: 10.1088/1742-6596/2437/1/012057

Google Scholar