Modeling the Heterogeneity Spatial Distribution of Coarse Second Phase Particle on Recrystallization Behavior in 7XXX Al Alloy

Article Preview

Abstract:

The heterogeneity of recrystallized subgrains is a substantial parameter which ought to be consider when controlling recrystallization fraction within a microstructure is needed. The statistical descriptor pair-correlation function is employed as stereological reference for reconstructing the nucleation sites spatial distribution within given volumes based on 2D data. The aim of the current study is to implement the 3D reconstructed particles distribution into a Monte Carlo approach to explore the evolution of microstructure in 7xxx Al alloy during homogenization process. Once the stored energy around the coarse particles is consumed recrystallizing grains the recrystallization is fulfilled. The simulated grain structures are qualitatively evolved in manner of the recrystallization of experimental data, and this verify that recrystallization process is mainly controlled by PSN mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1103)

Pages:

13-25

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Brahme, A., Alvi, M. H., Saylor, D., Fridy, J., and Rollett, A. D., 2006, "3D Reconstruction of Microstructure in a Commercial Purity Aluminum,"Scripta Materialia., 55(1), pp.75-8.

DOI: 10.1016/j.scriptamat.2006.02.017

Google Scholar

[2] Holm, E.A., and Duxbury, P.M., 2006, "Three-dimensional Materials Science," Scripta Materialia., 54(6), pp.1035-040.

DOI: 10.1016/j.scriptamat.2005.11.048

Google Scholar

[3] Rollet, A.D., Campman, R., and Saylor, D., 2006, "Three Dimensional Microstructures: Statistical Analysis of Second Phase Particles in AA7075-T651," Materials Science Forum Aluminum Alloys., 519-521, pp.1-10.

DOI: 10.4028/www.scientific.net/msf.519-521.1

Google Scholar

[4] Underwood, E.E., 1970, Quantitative Stereology, Addison Wesley Publishing Company, USA.

Google Scholar

[5] Dumont, D., Deschamps, A., and Brechet, Y., 2004, "A Model for Predicting Fracture Mode and Toughness in 7000 Series Aluminum Alloys," Acta Materialia., 52(9), pp.2529-540.

DOI: 10.1016/j.actamat.2004.01.044

Google Scholar

[6] Harnish, S. F., Padilla, H. A., Dantzig, J. A., Beaudoin, A. J., Gore, B. E., Robertson, I. M., and Weiland, H., 2010, "High-temperature Mechanical Behavior and Hot Rolling of AA705X," Metall and Mat Trans A Metallurgical and Materials Transactions., A 36(2), pp.357-69.

DOI: 10.1007/s11661-005-0308-8

Google Scholar

[7] Dixit, M., Mishra, R. S., and Sankaran, K. K., 2008, "Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys," Materials Science and Engineering., A 478, p.163–172.

DOI: 10.1016/j.msea.2007.05.116

Google Scholar

[8] Chen, J., Zou, L., Li, Q., and Chen, Y., 2015,"Microstructure Evolution of 7050 Al Alloy during Age-forming." Materials Characterization., 102, pp.114-21.

DOI: 10.1016/j.matchar.2015.02.009

Google Scholar

[9] Dumont, D., Deschamps, A., Bréchet, Y., Sigli, C., and Ehrström. J.C., 2004, "Characterization of Precipitation Microstructures in Aluminum Alloys 7040 and 7050 and Their Relationship to Mechanical Behavior, "Materials Science and Technology., 20, pp.567-76.

DOI: 10.1179/026708304225016662

Google Scholar

[10] Robson, J. D., 2004, "Microstructural evolution in aluminum alloy 7050 during processing." Materials Science and Engineering., A 382, p.112–121.

DOI: 10.1016/j.msea.2004.05.006

Google Scholar

[11] Staley, J.T., and Lege, D. J., 1993, "Advances in aluminum alloy products for structural applications in transportation," De physique iv., 3, pp.179-190.

DOI: 10.1051/jp4:1993728

Google Scholar

[12] Field, D.P., Behrens, L., and Root, J. M., 2009, "Identification of Particle Stimulated Nucleation during Recrystallization of AA 7050." Tech Science Press., 14.3, pp.171-183.

Google Scholar

[13] Barter, S.A., Athiniotis, N., and Lambrianidis, L., 1999, Examination of The Microstructure of 7050 aluminum Alloy Samples, Australian Government Publishing Service, commonwealth of Australia.

DOI: 10.21236/ada232544

Google Scholar

[14] Humphreys, F.J., and Hatherly, M., 2004, Recrystallization and Related Annealing Phenomena, Second edition. Elsevier Ltd, Oxford, UK.

DOI: 10.1016/b978-008044164-1/50003-7

Google Scholar

[15] Polmear, I. J., 2006, Light Alloys From Traditional Alloys to Nanocrystals, Fourth edition, Elsevier Butterworth-Heinemann, Burlington, MA, USA, Chap. 2.

DOI: 10.1017/s000192400008670x

Google Scholar

[16] Totten, G. E., and MacKenzie, D. S., 2003, Handbook of Aluminum: Physical Metallurgy and Processes, Marcel Dekker, Inc, NY, USA, Chap. 3.

Google Scholar

[17] Mao, Y., Gokhale, A. M., and Harris, J., 2006, "Computer simulations of realistic microstructures of coarse constituent particles in a hot-rolled aluminum alloy," Computational Materials Science., 37, p.543–556.

DOI: 10.1016/j.commatsci.2005.11.011

Google Scholar

[18] Radhakrishnan, B., and Sarma, G. B., 2004, Continuum Scale Simulation of Engineering Materials Fundamentals – Microstructures – Process Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Uwe Krieg, Berlin, Germany, Chap. 15.

DOI: 10.1080/10426910500476788

Google Scholar

[19] Radhakrishnan, B., and Sarma, G. B., 2004, "The effect of coarse non-deformable particles on the deformation and static recrystallization of aluminum alloys," Philosophical Magazine., 84(22), p.2341–2366.

DOI: 10.1080/14786430410001689990

Google Scholar

[20] Doherty, D, D.A Hughes, et al, 1997, "Current issues in recrystallization: a review," Materials Science and Engineering., A238, p.219–274.

Google Scholar

[21] Marthinsen, K., Fridy, J. M., Rouns, T. N., Lippert, K. B., Nes, E., 1998, "Characterization of 3D Particle Distributions and Effects on Recrystallization Kinetics and Microstructure," Scripta Materialia., 39(9), p.1177–1183.

DOI: 10.1016/s1359-6462(98)00315-7

Google Scholar

[22] Troeger, L. P., and Starke, E. A., 2000, "Particle-stimulated Nucleation of Recrystallization for Grain-size Control and Superplasticity in an Al–Mg–Si–Cu Alloy," Materials Science and Engineering., A293, pp.19-29.

DOI: 10.1016/s0921-5093(00)01235-1

Google Scholar

[23] Schäfer, C., Gottstein, G., 2007, "Modeling Recrystallization of Aluminum Alloys: A Refined Approach to Particle Stimulated Nucleation," Materials Science Forum., 558-559, pp.1169-1175.

DOI: 10.4028/www.scientific.net/msf.558-559.1169

Google Scholar

[24] Corson, P.B., 1974, "Correlation Functions for Predicting Properties of Heterogeneous Materials. IV. Effective Thermal Conductivity of Two-phase Solids," J. Appl. Phys. Journal of Applied Physics., 45(3171), p.3180.

DOI: 10.1063/1.1663744

Google Scholar

[25] Jiao, Y., Stillinger, F. H., and Torquato, S., 2007, "Modeling heterogeneous materials via two-point correlation functions: Basic principles," Physical Review., E 76, p.031110.

DOI: 10.1103/physreve.76.031110

Google Scholar

[26] Adams, B. L., Garmestani, H., and Lin, S., 1997, "Statistical Continuum Theory for Inelastic Behavior of a Two-Phase Medium," All Faculty Publications. Elsevier Ltd.

Google Scholar

[27] Garmestani, H., Lin, S., Adams, B. L., and Ahzi, S., 2001,"Statistical Continuum Theory for Large Plastic Deformation of Polycrystalline Materials," Journal of the Mechanics and Physics of Solids., 49, pp.589-607.

DOI: 10.1016/s0022-5096(00)00040-5

Google Scholar

[28] Belvin, A., Burrell, R., Gokhale, A., Thadhani, N., and Garmestani, H., 2009, "Application of Two-point Probability Distribution Functions to Predict Properties of Heterogeneous Two-phase Materials," Materials Characterization., 60, pp.1055-062.

DOI: 10.1016/j.matchar.2009.04.012

Google Scholar

[29] Fullwood, D. T., Niezgoda, S. R., and Kalidindi, S. R., 2008, "Microstructure Reconstructions from 2-point Statistics Using Phase-recovery Algorithms," Acta Materialia., 56, pp.942-48.

DOI: 10.1016/j.actamat.2007.10.044

Google Scholar

[30] Rollett, A.D., Lee, S.-B., Campman, R., and Rohrer, G. S., 2007, "Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction." A Annual Review of Materials Research., 37, pp.627-58.

DOI: 10.1146/annurev.matsci.37.052506.084401

Google Scholar

[31] S. Torquato, S., 2002, Random heterogeneous materials: microstructure and macroscopic properties, Springer, New York USA.

Google Scholar

[32] Tewari, A., Gokhale, A.M., Spowart, J.E., and Miracle, D. B., 2004, "Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions," Acta Materialia., 52, p.307–319.

DOI: 10.1016/j.actamat.2003.09.016

Google Scholar

[33] Holm, E.A, and Battaile, C.C., 2001, "The Computer Simulation of Microstructural Evolution," JOM, pp.20-23.

Google Scholar

[34] Seo, Y. S., Chun, Y. B., and Hwang, S. K., 2008, "A 3D Monte-Carlo Simulation Study of Recrystallization Kinetics in Zr with Hypothetical Stored Energy Gradients," Computational Materials Science., 43, pp.512-21

DOI: 10.1016/j.commatsci.2007.12.022

Google Scholar

[35] Miodownik, M., 2007, Computational Materials Engineering an Introduction to Microstructure Evolution, Elsevier, Oxford, UK, Chap. 3.

Google Scholar

[36] Rollett, A. D., and Manohar, P., 2004, Continuum Scale Simulation of Engineering Materials Fundamentals Microstructures Process Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Uwe Krieg, Berlin, Germany, Chap. 4.

DOI: 10.1080/10426910500476788

Google Scholar

[37] Radhakrishnan, B., and Zacharia, T., 2003, "Monte Carlo Simulation of Stored Energy Driven Interface Migration," Modelling Simul. Mater. Sci. Eng., 11, pp.307-19

DOI: 10.1088/0965-0393/11/3/304

Google Scholar

[38] Ferdinand Knipschildt, E. F. (2022). Nucleation of recrystallization. Materials Science and Technology, 38(12), 765-779

DOI: 10.1080/02670836.2022.2065054

Google Scholar

[39] Shi Q, Wang C, Deng K, Nie K, Liang W. Recrystallization Behavior of a Mg-5Zn Alloy Influenced by Minor SiCp during Hot Compression. Materials (Basel). 2022 Nov 29;15(23):8498. doi: 10.3390/ma15238498. PMID: 36499993; PMCID: PMC9740697.

DOI: 10.3390/ma15238498

Google Scholar