[1]
Brahme, A., Alvi, M. H., Saylor, D., Fridy, J., and Rollett, A. D., 2006, "3D Reconstruction of Microstructure in a Commercial Purity Aluminum,"Scripta Materialia., 55(1), pp.75-8.
DOI: 10.1016/j.scriptamat.2006.02.017
Google Scholar
[2]
Holm, E.A., and Duxbury, P.M., 2006, "Three-dimensional Materials Science," Scripta Materialia., 54(6), pp.1035-040.
DOI: 10.1016/j.scriptamat.2005.11.048
Google Scholar
[3]
Rollet, A.D., Campman, R., and Saylor, D., 2006, "Three Dimensional Microstructures: Statistical Analysis of Second Phase Particles in AA7075-T651," Materials Science Forum Aluminum Alloys., 519-521, pp.1-10.
DOI: 10.4028/www.scientific.net/msf.519-521.1
Google Scholar
[4]
Underwood, E.E., 1970, Quantitative Stereology, Addison Wesley Publishing Company, USA.
Google Scholar
[5]
Dumont, D., Deschamps, A., and Brechet, Y., 2004, "A Model for Predicting Fracture Mode and Toughness in 7000 Series Aluminum Alloys," Acta Materialia., 52(9), pp.2529-540.
DOI: 10.1016/j.actamat.2004.01.044
Google Scholar
[6]
Harnish, S. F., Padilla, H. A., Dantzig, J. A., Beaudoin, A. J., Gore, B. E., Robertson, I. M., and Weiland, H., 2010, "High-temperature Mechanical Behavior and Hot Rolling of AA705X," Metall and Mat Trans A Metallurgical and Materials Transactions., A 36(2), pp.357-69.
DOI: 10.1007/s11661-005-0308-8
Google Scholar
[7]
Dixit, M., Mishra, R. S., and Sankaran, K. K., 2008, "Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys," Materials Science and Engineering., A 478, p.163–172.
DOI: 10.1016/j.msea.2007.05.116
Google Scholar
[8]
Chen, J., Zou, L., Li, Q., and Chen, Y., 2015,"Microstructure Evolution of 7050 Al Alloy during Age-forming." Materials Characterization., 102, pp.114-21.
DOI: 10.1016/j.matchar.2015.02.009
Google Scholar
[9]
Dumont, D., Deschamps, A., Bréchet, Y., Sigli, C., and Ehrström. J.C., 2004, "Characterization of Precipitation Microstructures in Aluminum Alloys 7040 and 7050 and Their Relationship to Mechanical Behavior, "Materials Science and Technology., 20, pp.567-76.
DOI: 10.1179/026708304225016662
Google Scholar
[10]
Robson, J. D., 2004, "Microstructural evolution in aluminum alloy 7050 during processing." Materials Science and Engineering., A 382, p.112–121.
DOI: 10.1016/j.msea.2004.05.006
Google Scholar
[11]
Staley, J.T., and Lege, D. J., 1993, "Advances in aluminum alloy products for structural applications in transportation," De physique iv., 3, pp.179-190.
DOI: 10.1051/jp4:1993728
Google Scholar
[12]
Field, D.P., Behrens, L., and Root, J. M., 2009, "Identification of Particle Stimulated Nucleation during Recrystallization of AA 7050." Tech Science Press., 14.3, pp.171-183.
Google Scholar
[13]
Barter, S.A., Athiniotis, N., and Lambrianidis, L., 1999, Examination of The Microstructure of 7050 aluminum Alloy Samples, Australian Government Publishing Service, commonwealth of Australia.
DOI: 10.21236/ada232544
Google Scholar
[14]
Humphreys, F.J., and Hatherly, M., 2004, Recrystallization and Related Annealing Phenomena, Second edition. Elsevier Ltd, Oxford, UK.
DOI: 10.1016/b978-008044164-1/50003-7
Google Scholar
[15]
Polmear, I. J., 2006, Light Alloys From Traditional Alloys to Nanocrystals, Fourth edition, Elsevier Butterworth-Heinemann, Burlington, MA, USA, Chap. 2.
DOI: 10.1017/s000192400008670x
Google Scholar
[16]
Totten, G. E., and MacKenzie, D. S., 2003, Handbook of Aluminum: Physical Metallurgy and Processes, Marcel Dekker, Inc, NY, USA, Chap. 3.
Google Scholar
[17]
Mao, Y., Gokhale, A. M., and Harris, J., 2006, "Computer simulations of realistic microstructures of coarse constituent particles in a hot-rolled aluminum alloy," Computational Materials Science., 37, p.543–556.
DOI: 10.1016/j.commatsci.2005.11.011
Google Scholar
[18]
Radhakrishnan, B., and Sarma, G. B., 2004, Continuum Scale Simulation of Engineering Materials Fundamentals – Microstructures – Process Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Uwe Krieg, Berlin, Germany, Chap. 15.
DOI: 10.1080/10426910500476788
Google Scholar
[19]
Radhakrishnan, B., and Sarma, G. B., 2004, "The effect of coarse non-deformable particles on the deformation and static recrystallization of aluminum alloys," Philosophical Magazine., 84(22), p.2341–2366.
DOI: 10.1080/14786430410001689990
Google Scholar
[20]
Doherty, D, D.A Hughes, et al, 1997, "Current issues in recrystallization: a review," Materials Science and Engineering., A238, p.219–274.
Google Scholar
[21]
Marthinsen, K., Fridy, J. M., Rouns, T. N., Lippert, K. B., Nes, E., 1998, "Characterization of 3D Particle Distributions and Effects on Recrystallization Kinetics and Microstructure," Scripta Materialia., 39(9), p.1177–1183.
DOI: 10.1016/s1359-6462(98)00315-7
Google Scholar
[22]
Troeger, L. P., and Starke, E. A., 2000, "Particle-stimulated Nucleation of Recrystallization for Grain-size Control and Superplasticity in an Al–Mg–Si–Cu Alloy," Materials Science and Engineering., A293, pp.19-29.
DOI: 10.1016/s0921-5093(00)01235-1
Google Scholar
[23]
Schäfer, C., Gottstein, G., 2007, "Modeling Recrystallization of Aluminum Alloys: A Refined Approach to Particle Stimulated Nucleation," Materials Science Forum., 558-559, pp.1169-1175.
DOI: 10.4028/www.scientific.net/msf.558-559.1169
Google Scholar
[24]
Corson, P.B., 1974, "Correlation Functions for Predicting Properties of Heterogeneous Materials. IV. Effective Thermal Conductivity of Two-phase Solids," J. Appl. Phys. Journal of Applied Physics., 45(3171), p.3180.
DOI: 10.1063/1.1663744
Google Scholar
[25]
Jiao, Y., Stillinger, F. H., and Torquato, S., 2007, "Modeling heterogeneous materials via two-point correlation functions: Basic principles," Physical Review., E 76, p.031110.
DOI: 10.1103/physreve.76.031110
Google Scholar
[26]
Adams, B. L., Garmestani, H., and Lin, S., 1997, "Statistical Continuum Theory for Inelastic Behavior of a Two-Phase Medium," All Faculty Publications. Elsevier Ltd.
Google Scholar
[27]
Garmestani, H., Lin, S., Adams, B. L., and Ahzi, S., 2001,"Statistical Continuum Theory for Large Plastic Deformation of Polycrystalline Materials," Journal of the Mechanics and Physics of Solids., 49, pp.589-607.
DOI: 10.1016/s0022-5096(00)00040-5
Google Scholar
[28]
Belvin, A., Burrell, R., Gokhale, A., Thadhani, N., and Garmestani, H., 2009, "Application of Two-point Probability Distribution Functions to Predict Properties of Heterogeneous Two-phase Materials," Materials Characterization., 60, pp.1055-062.
DOI: 10.1016/j.matchar.2009.04.012
Google Scholar
[29]
Fullwood, D. T., Niezgoda, S. R., and Kalidindi, S. R., 2008, "Microstructure Reconstructions from 2-point Statistics Using Phase-recovery Algorithms," Acta Materialia., 56, pp.942-48.
DOI: 10.1016/j.actamat.2007.10.044
Google Scholar
[30]
Rollett, A.D., Lee, S.-B., Campman, R., and Rohrer, G. S., 2007, "Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction." A Annual Review of Materials Research., 37, pp.627-58.
DOI: 10.1146/annurev.matsci.37.052506.084401
Google Scholar
[31]
S. Torquato, S., 2002, Random heterogeneous materials: microstructure and macroscopic properties, Springer, New York USA.
Google Scholar
[32]
Tewari, A., Gokhale, A.M., Spowart, J.E., and Miracle, D. B., 2004, "Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions," Acta Materialia., 52, p.307–319.
DOI: 10.1016/j.actamat.2003.09.016
Google Scholar
[33]
Holm, E.A, and Battaile, C.C., 2001, "The Computer Simulation of Microstructural Evolution," JOM, pp.20-23.
Google Scholar
[34]
Seo, Y. S., Chun, Y. B., and Hwang, S. K., 2008, "A 3D Monte-Carlo Simulation Study of Recrystallization Kinetics in Zr with Hypothetical Stored Energy Gradients," Computational Materials Science., 43, pp.512-21
DOI: 10.1016/j.commatsci.2007.12.022
Google Scholar
[35]
Miodownik, M., 2007, Computational Materials Engineering an Introduction to Microstructure Evolution, Elsevier, Oxford, UK, Chap. 3.
Google Scholar
[36]
Rollett, A. D., and Manohar, P., 2004, Continuum Scale Simulation of Engineering Materials Fundamentals Microstructures Process Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Uwe Krieg, Berlin, Germany, Chap. 4.
DOI: 10.1080/10426910500476788
Google Scholar
[37]
Radhakrishnan, B., and Zacharia, T., 2003, "Monte Carlo Simulation of Stored Energy Driven Interface Migration," Modelling Simul. Mater. Sci. Eng., 11, pp.307-19
DOI: 10.1088/0965-0393/11/3/304
Google Scholar
[38]
Ferdinand Knipschildt, E. F. (2022). Nucleation of recrystallization. Materials Science and Technology, 38(12), 765-779
DOI: 10.1080/02670836.2022.2065054
Google Scholar
[39]
Shi Q, Wang C, Deng K, Nie K, Liang W. Recrystallization Behavior of a Mg-5Zn Alloy Influenced by Minor SiCp during Hot Compression. Materials (Basel). 2022 Nov 29;15(23):8498. doi: 10.3390/ma15238498. PMID: 36499993; PMCID: PMC9740697.
DOI: 10.3390/ma15238498
Google Scholar