Measurement of Molten Steel Level Using a Single Camera in Top Side-Pouring Twin-Roll Casting

Article Preview

Abstract:

The molten steel level in twin-roll strip casting (TRC) has a significant impact on the heat transfer process between the molten steel and the rolls, as well as the subsequent solidification process of the steel. Therefore, ensuring a specific and stable molten steel level is crucial for the quality of as-casting strips. To achieve this, a precise and real-time molten steel level detection system is required. This paper utilizes machine vision technology to measure the molten steel level. A general mathematical model for the molten steel level in the TRC process is established. An image processing method for measuring the molten steel level using a single camera is proposed, including image segmentation, edge detection, and multiple coordinate transformations of the molten pool contour. The adverse effect of the inlet or nozzle is taken into account. Experimental measurements were conducted, and the results indicate that a single camera can accurately measure the molten steel level. Potential sources of error or limitations that may impact the accuracy of the proposed method is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1103)

Pages:

63-72

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ge, M. Isac, R.I.L. Guthrie, Progress of strip casting technology for steel; historical developments, ISIJ Int., 52 (2012), 2109-2122.

DOI: 10.2355/isijinternational.52.2109

Google Scholar

[2] S. Ge, M. Isac, R.I.L. Guthrie, Progress of strip casting technology for steel; technical developments, ISIJ Int., 53 (2013), 729-742.

DOI: 10.2355/isijinternational.53.729

Google Scholar

[3] M. Daamen, C. Haase, J. Dierdorf, D.A. Molodov, G. Hirt, Twin-roll strip casting: a competitive alternative for the production of high-manganese steels with advanced mechanical properties, Mater. Sci. Eng.: A, 627 (2015), 72-81.

DOI: 10.1016/j.msea.2014.12.069

Google Scholar

[4] A. Girgensohn, A.R. Büchner, K.H. Tacke, Twin roll strip casting of low carbon steels, Ironmak. Steelmak., 27 (2000), 317-323.

DOI: 10.1179/030192300677615

Google Scholar

[5] A. Maleki, A. Taherizadeh, N. Hosseini, Twin Roll Casting of Steels: An Overview, ISIJ Int., 57 (2018), 1-14.

DOI: 10.2355/isijinternational.isijint-2016-502

Google Scholar

[6] B.Q. Li, Producing thin strips by twin-roll casting - part I: process aspects and quality issues, J. Miner., Met. Mater. Soc., 47 (1995), 29-33.

DOI: 10.1007/bf03221172

Google Scholar

[7] D.S. Li, J.S. Lee, T. Kang, Robust molten steel level control in a strip-casting process, ISIJ int., 45 (2005), 1165-1172.

DOI: 10.2355/isijinternational.45.1165

Google Scholar

[8] Y.J. Zhang, L.B. Wu, H.Y. Zhao, X.D. Hu, W.Y. Zhang, D.Y. Ju. Adaptive fuzzy control design for the molten steel level in a strip casting process, Metalurgija, 56 (2017), 311-314.

Google Scholar

[9] R.A. Katankin, A.D. Pokrovskiy, A study of the eddy-current method of testing the level of molten steel in the thin-slab crystallization process, Russ. J. Nondestr. Test., 45 (2009), 542-548.

DOI: 10.1134/s1061830909080063

Google Scholar

[10] G. Yan, Y. Huang, A novel isotopic mould measurement system for molten steel level based on real time algorithm, J. Test. Meas. Tech., 22 (2008), 505-509.

Google Scholar

[11] O.G.H. Nygaard, K.S. Mylvaganam, Ultrasonic time-domain reflectometry for level measurement in molten metals, tm - Technisches Messen, 60 (1993), 4-14.

DOI: 10.1524/teme.1993.60.1.4

Google Scholar

[12] L.M. Zhao, Q. Ouyang, D.F. Chen, L.Y. Wen, Surface defects inspection method in hot slab continuous casting process, Ironmak. Steelmak., 38 (2011), 464-470.

DOI: 10.1179/1743281211y.0000000025

Google Scholar

[13] J. Li, Z.D. Wang, K. Wang, G.D. Wang, Camera mathematic model of the molten steel level detection in the strip casting process, 2013 Int. Conf. Mechatron. Sci., Electr. Eng. Comp., (2013), 1216-1219.

DOI: 10.1109/mec.2013.6885252

Google Scholar

[14] V. Gurumurthi, S. Manogar, Recognition of plant leaf diseases using CNN, Adv. Sci. Tech., 124 (2023), 88-95.

Google Scholar

[15] B. Zhong, H. Huang, E. Lobaton, Reliable vision-based grasping target recognition for upper limb prostheses, IEEE Trans. Cybernetics, 52 (2020), 1750-1762.

DOI: 10.1109/tcyb.2020.2996960

Google Scholar

[16] Z. Jiang, C. Zhou, Automatic measurement of nanoimage based on machine vision and powder metallurgy materials, Adv. Mater. Sci. Eng., 2022 (2022), 8975190.

Google Scholar

[17] L. Wu, Z. Cai, C. Lin, Z. Chen, S. Cheng, P. Lin, Investigation of the super-resolution methods for vision based structural measurement, Smart Struct. Syst., 30 (2022), 287-301.

Google Scholar

[18] X. Wei, J. Wang, G. Zhang, L. Niu, Three-dimensional morphology and size measurement of high-temperature metal components based on machine vision technology: A review, Sens., 21 (2021), 4680.

DOI: 10.3390/s21144680

Google Scholar

[19] V. Koblar, B. Filipic. Evolutionary design of a system for online surface roughness measurements, Math., 9 (2021), 1904.

Google Scholar

[20] M.Y. Moemen, H. Elghamrawy, S.N. Givigi, A. Noureldin, 3-D reconstruction and measurement system based on multimobile robot machine vision, IEEE Trans. on Instrum. Meas., 70 (2021), 5003109.

DOI: 10.1109/tim.2020.3026719

Google Scholar

[21] L. Zhu, T. Wang, Y. Fang, Measurement and AFPS control of molten steel level in strip casting, J. Uni. Sci. Tech. Beijing, 12 (2005), 16-22.

Google Scholar

[22] D. Wang, C. Zhou, A top side-pouring twin-roll caster for metals strips, J. Mater. Process. Tech., 214 (2014), 916-924.

DOI: 10.1016/j.jmatprotec.2013.12.001

Google Scholar

[23] D. Xuan, C. Zhou, Y. Zhou, T. Jiang, B. Zhu, W. Fan, Y. Jia, Comparison of the casting process of 3.0% Si steel between the top side-pouring twin-roll casting and twin-roll strip casting, Int. J. Adv. Manuf. Tech., 119 (2022), 7751-7764.

DOI: 10.1007/s00170-021-08498-x

Google Scholar

[24] S. Milan, V. Hlavac, R. Boyle, Image Processing, Analysis and Machine Vision, 1st Ed. Springer, Boston, 1993.

Google Scholar

[25] R.N. Goldman, Area of planar polygons and volume of polyhedra, in: J. Arvo (Eds.), Graphics Gems II, Morgan Kaufmann, San Diego, 1991, pp.170-171.

DOI: 10.1016/b978-0-08-050754-5.50043-8

Google Scholar