Enhancement of the Microstructure and Mechanical Properties of 1020 Carbon Steel and AISI 304 Stainless Steel Dissimilar Weld Using Different Post-Weld Heat Treatments

Article Preview

Abstract:

In order to improve the microstructure and mechanical properties of gas metal arc dissimilar weldment of AISI 304 and 1020 carbon steel, different post-weld heat treatment (PWHT) processes including annealing, tempering and normalizing were performed. The post-tempered weldment exhibited improved grain refinement over the as-welded. The as-welded joint is characterized with the formation of hard martensitic phase and CrC precipitates while the post-weld heat treated (PWHTed) joints consist more of softer ferritic phase. The PWHTs resulted in the weldment hardness reduction with post-annealed demonstrating the least hardness. Only the post-tempered weldment demonstrated improved tensile strength (~5.2%) over the as-welded (421 MPa). All the PWHT processes resulted in improved elongation (i.e., ductility) and impact energies over the as-welded. While the entire PWHTed weldments demonstrated ductile fracture mode, the as-welded sample exhibited a combination of ductile and brittle fracture mode after the tensile test.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1103)

Pages:

37-48

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Arivazhagan, S. Singh, S. Prakash, M. Reddy, Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding, Materials & Design. 32(2011) 3036 – 3050.

DOI: 10.1016/j.matdes.2011.01.037

Google Scholar

[2] P. Mondal, D. Bose, Optimization of the process parameters for MIG welding of AISI 304 and IS 1079 using Fuzzy Logic Method, International Research Journal of Engineering and Technology. 02(2015) 483 – 488.

DOI: 10.22214/ijraset.2018.1407

Google Scholar

[3] S. Sivakumar, J.R.V. Kumar, Experimental Investigation on MIG Welded Low Carbon Steel, International Journal of Machine and Construction Engineering. 2(2015) 2394-3025.

Google Scholar

[4] N. Sankar, S. Malarvizhi, V. Balasubramanian, Performance and Characteristics of Stationary Arc and Rotating Arc-Gas Metal Arc Welded DMR 249 Naval Grade Steel Joints, Materials Performance and Characterization. 11(2022) 170 - 192.

DOI: 10.1520/mpc20210131

Google Scholar

[5] T.E. Abioye, L.S. Omotehinse, I.O. Oladele, T.O. Olugbade, T.I. Ogedengbe, Effects of post-weld heat treatments on the microstructure, mechanical and corrosion properties of gas metal arc welded 304 stainless steel, World Journal of Engineering. 17(2020) 87-96.

DOI: 10.1108/WJE-11-2019-0323

Google Scholar

[6] A. Ramazani, K. Mukherjee, A. Abdurakhmanov, U. Prahl, M. Schleser, U. Reisgen, W. Bleck, Micro-Macro-Characterisation and Modelling of Mechanical Properties of Gas Metal Arc Welded (GMAW) DP600 Steel, Materials Science & Engineering: A. 589(2013) 1–14.

DOI: 10.1016/j.msea.2013.09.056

Google Scholar

[7] J.S. Lee, Kim, B. Lee, Effect of Post-Weld Heat Treatment Conditions on Mechanical Properties, Microstructures and Nonductile Fracture Behavior of SA508 Gr.1a Thick Weldments, Met. Mater. Int. 27(2021) 4700–4709

DOI: 10.1007/s12540-021-01090-8

Google Scholar

[8] S.B. Bal, J.D. Majumdar, A.R. Choudhury, Effect of post-weld heat treatment on the tensile strength of laser beam welded hastelloy C-276 sheets at different heat inputs, Journal of Manufacturing Processes. 37(2019) 578 - 594.

DOI: 10.1016/j.jmapro.2018.12.019

Google Scholar

[9] P. Mayr, C. Schlacher, J.A. Siefert, J.D. Parker, Microstructural features, mechanical properties and high temperature failures of ferritic-to-ferritic dissimilar welds, International Materials Reviews. 64(2018) 1-26.

DOI: 10.1080/09506608.2017.1410943

Google Scholar

[10] A. Ul-Hamed, H.M. Tawancy, N.M. Abass, Failure of weld joints between carbon steel pipe and 304 stainless steel elbows, Engineering Failure Analysis. 12(2005) 181–191.

DOI: 10.1016/j.engfailanal.2004.07.003

Google Scholar

[11] R. Ramdan, A. Koswara, R. Wirawan, F. Faturohman, B. Widyanto, R. Suratman, Metallurgy and mechanical properties variation with heat input during dissimilar metal welding between stainless and carbon steel, IOP Conference Series: Materials Science and Engineering. 307(2018) 012056.

DOI: 10.1088/1757-899x/307/1/012056

Google Scholar

[12] J.C.F. Jorge, J.L.D. Monteiro, A.J. Gomes, I. Bott, L. Souza, M.C. Mendes, L.S. Araújo, Influence of welding procedure and PWHT on HSLA steel weld metals, Journal of Materials Research and Technology. (2018)

DOI: 10.1016/j.jmrt.2018.05.007

Google Scholar

[13] A. Hamada, S. Ghosh, M. Ali, M. Jaskari, A. Jarvenpaa, Studying the strengthening mechanisms and mechanical properties of dissimilar laser-welded butt joints of medium-Mn stainless steel and automotive high-strength carbon steel, Materials Science and Engineering: A. 856(2022) 143936

DOI: 10.1016/j.msea.2022.143936

Google Scholar

[14] M. Khan, M.W. Dewan, M.Z. Sarkar, Effects of welding technique, filler metal and post-weld heat treatment on stainless steel and mild steel dissimilar welding joint, Journal of Manufacturing Processes. 64(2021) 1307–1321.

DOI: 10.1016/j.jmapro.2021.02.058

Google Scholar

[15] T.E. Abioye, C.O. Kanu, T.I. Ogedengbe, D.L. Adebiyi, Parametric optimisation of gas metal arc dissimilar welding on AISI 304 stainless steel and low carbon steel, Microstructures and Materials Properties. 14(2019) 155-169.

DOI: 10.1504/IJMMP.2019.099225

Google Scholar

[16] N. Alcantar-Modragón, V. García-García, F. Reyes-Calderón, J.C. Villalobos-Brito, H.J. Vergara-Hernández, Study of cracking susceptibility in similar and dissimilar welds between carbon steel and austenitic stainless steel through finger test and FE numerical model, The International Journal of Advanced Manufacturing Technology. 116(2021) 2661–2686

DOI: 10.1007/s00170-021-07596-0

Google Scholar

[17] Y. Liu, M. Liu, L. Luo, J. Wang, C. Liu, The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate, Materials (Basel). 9(2014) 7875-7890.

DOI: 10.3390/ma7127875

Google Scholar

[18] S. Ghorbani, R. Ghasem, R. Ebrahimi-Kahrizsangi, A. Hojjati-Najafabadi, Effect of post weld heat treatment (PWHT) on the microstructure, mechanical properties, and corrosion resistance of dissimilar stainless steels, Materials Science and Engineering: A. 688(2017) 470-479.

DOI: 10.1016/j.msea.2017.02.020

Google Scholar

[19] X. Zhou, Y. Liu, Z. Qiao, Q. Guo, C. Liu, L. Yu, H. Li, Effects of cooling rates on δ-ferrite/γ-austenite formation and martensitic transformation in modified ferritic heat resistant steel, Fusion Engineering and Design. 125(2017) 354-360.

DOI: 10.1016/j.fusengdes.2017.05.095

Google Scholar

[20] X. Yuan, L. Chen, Y. Zhao, H. Di, F. Zhu, Dependence of grain size on mechanical properties and microstructures of high manganese austenitic steel, Procedia Engineering. 81(2014) 143 – 148.

DOI: 10.1016/j.proeng.2014.09.141

Google Scholar

[21] T.E. Abioye, Laser deposition of Inconel 625/tungsten carbide composite coatings by powder and wire feedstocks. PhD Thesis, University of Nottingham, UK. 2014.

Google Scholar

[22] A.C. Gonzaga, C. Barbosa, S.S.SM. Tavares, A. Zeemann, J.C. Payão, Influence of post welding heat treatments on sensitization of AISI 347 stainless steel welded joints. Journal of Materials Research and Technology. 9(2020) 908-921.

DOI: 10.1016/j.jmrt.2019.11.031

Google Scholar

[23] R. Bobbili, V. Madhu, A.K. Gogia, Tensile behaviour of aluminium 7017 alloy at various temperatures and strain rates, Journal of Materials Research and Technology. 5(2016) 190-197.

DOI: 10.1016/j.jmrt.2015.12.002

Google Scholar