Environmental Impact of Chitosan Production from Black Soldier Flies Using Life Cycle Assessment

Article Preview

Abstract:

The plastic market is under constant pressure to find viable options to replace petroleum-based polymers. Sustainability has become one crucial parameter when assessing new products or alternatives. Biopolymers are a potential replacement for synthetic plastics because they come from renewable resources. Chitin is the second most abundant biopolymer found in nature, and chitosan is the deacetylated product from chitin. Chitosan has many applications that make it an exciting option for the future. In this study, the environmental impact of the production of chitosan from Black Soldier Flies has been assessed considering a techno-environmental perspective. Three processes were evaluated in the production of chitosan from the insect with variations in the amount of reagent used from an optimization perspective. The optimized process, called the recycled process, showed a significant reduction of the environmental indicator across the 18 categories assessed. Using ReCiPe Midpoint H and SimaPro software, the global warming indicator for this process was calculated among other impact categories. One kilogram of chitosan from Black Soldier Flies emitted 7.69 kg CO2 eq. The higher contributor to the major categories was the use of sodium hydroxide in the deproteinization and deacetylation step. Furthermore, the raw material cost for the chitosan produced from the insects is about $10, which situates this option as equal to chitosan produced from other raw materials, shrimp, or crab shells.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1108)

Pages:

163-171

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Sugiyama, M. Hirao, R. Medividil, U. Fischer, K. HUNGERBU, A Hierarchical Activity Model of Chemical Process Design Based on Life Cycle Assessment. , Process Saf. Environ. Prot. 84 (2006) 63–74.

DOI: 10.1205/psep.04142

Google Scholar

[2] I. Younes, M. Rinaudo, Chitin and chitosan preparation from marine sources. Structure, properties and applications, Mar. Drugs. 13 (2015) 1133–1174.

DOI: 10.3390/md13031133

Google Scholar

[3] S. Hirano, Chitin and Chitosan, in: U. Gehartz, Wolfgang; Schulz, Thomas; Elvers, Barbara; Hawkins, Stephen; Winter (Ed.), Ullman's Encycl. Ind. Chem., 5th ed., Wiley, 2005: p.5116–5128.

DOI: 10.1002/14356007

Google Scholar

[4] A. Riofrio, T. Alcivar, H. Baykara, Environmental and Economic Viability of Chitosan Production in Guayas-Ecuador : A Robust Investment and Life Cycle Analysis, ACS Omega. (2021).

DOI: 10.1021/acsomega.1c01672

Google Scholar

[5] L. Soetemans, M. Uyttebroek, L. Bastiaens, Characteristics of chitin extracted from black soldier fly in different life stages, Int. J. Biol. Macromol. 165 (2020) 3206–3214.

DOI: 10.1016/J.IJBIOMAC.2020.11.041

Google Scholar

[6] A. Caligiani, A. Marseglia, G. Leni, S. Baldassarre, L. Maistrello, A. Dossena, S. Sforza, Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin, Food Res. Int. 105 (2018) 812–820.

DOI: 10.1016/J.FOODRES.2017.12.012

Google Scholar

[7] R. Smets, B. Verbinnen, I. Van De Voorde, G. Aerts, J. Claes, M. Van Der Borght, Sequential Extraction and Characterisation of Lipids, Proteins, and Chitin from Black Soldier Fly (Hermetia illucens) Larvae, Prepupae, and Pupae, Waste and Biomass Valorization. 11 (2020) 6455–6466.

DOI: 10.1007/s12649-019-00924-2

Google Scholar

[8] M. Kaya, V. Baublys, E. Can, I. Šatkauskienė, B. Bitim, V. Tubelytė, T. Baran, Comparison of physicochemical properties of chitins isolated from an insect (Melolontha melolontha) and a crustacean species (Oniscus asellus), Zoomorphology. 133 (2014) 285–293.

DOI: 10.1007/s00435-014-0227-6

Google Scholar

[9] G. Bosch, H.H.E. van Zanten, A. Zamprogna, M. Veenenbos, N.P. Meijer, H.J. van der Fels-Klerx, J.J.A. van Loon, Conversion of organic resources by black soldier fly larvae: Legislation, efficiency and environmental impact, J. Clean. Prod. 222 (2019) 355–363.

DOI: 10.1016/J.JCLEPRO.2019.02.270

Google Scholar

[10] S. Bußler, B.A. Rumpold, E. Jander, H.M. Rawel, O.K. Schlüter, Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae, Heliyon. 2 (2016) e00218.

DOI: 10.1016/J.HELIYON.2016.E00218

Google Scholar

[11] W.S. Wan Ngah, L.C. Teong, R.H. Toh, M.A.K.M. Hanafiah, Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan-zeolite composites, Chem. Eng. J. 223 (2013) 231–238.

DOI: 10.1016/j.cej.2013.02.090

Google Scholar

[12] H. Wang, J. Qian, F. Ding, Emerging Chitosan-Based Films for Food Packaging Applications, J. Agric. Food Chem. (2018).

DOI: 10.1021/acs.jafc.7b04528

Google Scholar

[13] International organization for standardization, ISO 14040: Environmental management–life cycle assessment—Principles and framework, 2006.

Google Scholar

[14] F. Colangelo, I. Farina, M. Travaglioni, C. Salzano, R. Cioffi, A. Petrillo, Eco-efficient industrial waste recycling for the manufacturing of fibre reinforced innovative geopolymer mortars: Integrated waste management and green product development through LCA, J. Clean. Prod. 312 (2021) 127777.

DOI: 10.1016/j.jclepro.2021.127777

Google Scholar

[15] J.S. Adiansyah, M. Rosano, S. Vink, G. Keir, A framework for a sustainable approach to mine tailings management: Disposal strategies, J. Clean. Prod. 108 (2015) 1050–1062.

DOI: 10.1016/j.jclepro.2015.07.139

Google Scholar

[16] D. Purkayastha, S. Sarkar, Physicochemical Structure Analysis of Chitin Extracted from Pupa Exuviae and Dead Imago of Wild Black Soldier Fly (Hermetia illucens), J. Polym. Environ. 28 (2020) 445–457.

DOI: 10.1007/s10924-019-01620-x

Google Scholar

[17] N.H. Marei, E.A. El-Samie, T. Salah, G.R. Saad, A.H.M. Elwahy, Isolation and characterization of chitosan from different local insects in Egypt, Int. J. Biol. Macromol. 82 (2016) 871–877.

DOI: 10.1016/J.IJBIOMAC.2015.10.024

Google Scholar

[18] I. Muñoz, C. Rodríguez, D. Gillet, B. M. Moerschbacher, Life cycle assessment of chitosan production in India and Europe, Int. J. Life Cycle Assess. 23 (2018) 1151–1160.

DOI: 10.1007/s11367-017-1290-2

Google Scholar

[19] European Commission - Joint Research Centre - Institute for Environment and Sustainability, International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance., 2010.

DOI: 10.1007/978-94-007-1899-9_11

Google Scholar

[20] Pré-Sustainability B.V., SimaPro, (2022). https://simapro.com/.

Google Scholar

[21] M.A.J. Huijbregts, Z.J.N. Steinmann, P.M.F. Elshout, G. Stam, F. Verones, M. Vieira, M. Zijp, A. Hollander, R. van Zelm, ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level, Int. J. Life Cycle Assess. 22 (2017) 138–147.

DOI: 10.1007/s11367-016-1246-y

Google Scholar

[22] A.D. Ramirez, A. Boero, B. Rivela, A.M. Melendres, S. Espinoza, D.A. Salas, Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?, Renew. Sustain. Energy Rev. 134 (2020) 110373.

DOI: 10.1016/J.RSER.2020.110373

Google Scholar

[23] R. Smets, B. Verbinnen, I. Van De Voorde, G. Aerts, J. Claes, · Mik, V. Der Borght, Sequential Extraction and Characterisation of Lipids, Proteins, and Chitin from Black Soldier Fly (Hermetia illucens) Larvae, Prepupae, and Pupae, Waste and Biomass Valorization. 11 (2020) 6455–6466.

DOI: 10.1007/s12649-019-00924-2

Google Scholar

[24] A. Franco, C. Scieuzo, R. Salvia, A.M. Petrone, E. Tafi, A. Moretta, E. Schmitt, P. Falabella, Lipids from Hermetia illucens, an Innovative and Sustainable Source, Sustain. 2021, Vol. 13, Page 10198. 13 (2021) 10198.

DOI: 10.3390/SU131810198

Google Scholar

[25] ChemAnalyst, Hydrochloric Acid Prices, News, Demand & Supply | ChemAnalyst, (2022). https://www.chemanalyst.com/Pricing-data/hydrochloric-acid-61%0A.

Google Scholar

[26] ChemAnalyst, Caustic Soda Prices, Price, Pricing, Market Analysis | ChemAnalyst, (2022). https://www.chemanalyst.com/Pricing-data/caustic-soda-3 (accessed February 25, 2022).

Google Scholar

[27] ChemAnalyst, N-Hexane Prices, News, Market Analysis | ChemAnalyst, (2022). https://www.chemanalyst.com/Pricing-data/n-hexane-1151 (accessed February 25, 2022).

Google Scholar

[28] P. Graceraj Ponnusamy, S. Mani, Life cycle assessment of manufacturing cellulose nanofibril‑reinforced chitosan composite films for packaging applications, Int. J. Life Cycle Assess. (2022) 1–15.

DOI: 10.1007/s11367-022-02035-y

Google Scholar

[29] R. Rosa, R. Spinelli, P. Neri, M. Pini, S. Barbi, M. Montorsi, L. Maistrello, A. Marseglia, A. Caligiani, A.M. Ferrari, Life Cycle Assessment of Chemical vs Enzymatic-Assisted Extraction of Proteins from Black Soldier Fly Prepupae for the Preparation of Biomaterials for Potential Agricultural Use, ACS Sustain. Chem. Eng. 8 (2020) 14752–14764.

DOI: 10.1021/acssuschemeng.0c03795

Google Scholar

[30] M.R. Yates, C.Y. Barlow, Life cycle assessments of biodegradable, commercial biopolymers—A critical review, Resour. Conserv. Recycl. 78 (2013) 54–66. https://doi.org/.

DOI: 10.1016/J.RESCONREC.2013.06.010

Google Scholar

[31] A. Kendall, A life cycle assessment of biopolymer production from material recovery facility residuals, Resour. Conserv. Recycl. 61 (2012) 69–74. https://doi.org/.

DOI: 10.1016/J.RESCONREC.2012.01.008

Google Scholar

[32] V. Piemonte, F. Gironi, Land-use change emissions: How green are the bioplastics?, Environ. Prog. Sustain. Energy. 30 (2011) 685–691.

DOI: 10.1002/EP.10518

Google Scholar

[33] P.M. Rojas-Bringas, G.E. De-la-Torre, F.G. Torres, Influence of the source of starch and plasticizers on the environmental burden of starch-Brazil nut fiber biocomposite production: A life cycle assessment approach, Sci. Total Environ. 769 (2021) 144869. https://doi.org/.

DOI: 10.1016/J.SCITOTENV.2020.144869

Google Scholar

[34] T.A. Hottle, M.M. Bilec, A.E. Landis, Sustainability assessments of bio-based polymers, Polym. Degrad. Stab. 98 (2013) 1898–1907. https://doi.org/.

DOI: 10.1016/J.POLYMDEGRADSTAB.2013.06.016

Google Scholar

[35] K. Cogollo-Herrera, H. Bonfante-Álvarez, G. De Ávila-Montiel, A.H. Barros, Á.D. González-Delgado, Techno-economic sensitivity analysis of large scale chitosan production process from shrimp shell wastes, Chem. Eng. Trans. 70 (2018) 2179–2184. https://doi.org/.

Google Scholar

[36] D. Gómez-Ríos, R. Barrera-Zapata, R. Ríos-Estepa, Comparison of process technologies for chitosan production from shrimp shell waste: A techno-economic approach using Aspen Plus®, Food Bioprod. Process. 103 (2017) 49–57.

DOI: 10.1016/j.fbp.2017.02.010

Google Scholar

[37] H.C. Nguyen, S.H. Liang, S.Y. Li, C.H. Su, C.C. Chien, Y.J. Chen, D.T.M. Huong, Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production, J. Taiwan Inst. Chem. Eng. 85 (2018) 165–169.

DOI: 10.1016/j.jtice.2018.01.035

Google Scholar

[38] F. Chemat, M.A. Vian, Larvae Mediated Valorization of Industrial , Agriculture and Food Wastes : Biorefinery Concept and Products, Processes. 8 (2020) 857. https://doi.org/.

DOI: 10.3390/pr8070857

Google Scholar

[39] S. Ng, B. Song, J.G. Fernandez, Environmental attributes of fungal-like adhesive materials and future directions for bioinspired manufacturing, J. Clean. Prod. 282 (2021) 125335.

DOI: 10.1016/j.jclepro.2020.125335

Google Scholar