[1]
H. Sugiyama, M. Hirao, R. Medividil, U. Fischer, K. HUNGERBU, A Hierarchical Activity Model of Chemical Process Design Based on Life Cycle Assessment. , Process Saf. Environ. Prot. 84 (2006) 63–74.
DOI: 10.1205/psep.04142
Google Scholar
[2]
I. Younes, M. Rinaudo, Chitin and chitosan preparation from marine sources. Structure, properties and applications, Mar. Drugs. 13 (2015) 1133–1174.
DOI: 10.3390/md13031133
Google Scholar
[3]
S. Hirano, Chitin and Chitosan, in: U. Gehartz, Wolfgang; Schulz, Thomas; Elvers, Barbara; Hawkins, Stephen; Winter (Ed.), Ullman's Encycl. Ind. Chem., 5th ed., Wiley, 2005: p.5116–5128.
DOI: 10.1002/14356007
Google Scholar
[4]
A. Riofrio, T. Alcivar, H. Baykara, Environmental and Economic Viability of Chitosan Production in Guayas-Ecuador : A Robust Investment and Life Cycle Analysis, ACS Omega. (2021).
DOI: 10.1021/acsomega.1c01672
Google Scholar
[5]
L. Soetemans, M. Uyttebroek, L. Bastiaens, Characteristics of chitin extracted from black soldier fly in different life stages, Int. J. Biol. Macromol. 165 (2020) 3206–3214.
DOI: 10.1016/J.IJBIOMAC.2020.11.041
Google Scholar
[6]
A. Caligiani, A. Marseglia, G. Leni, S. Baldassarre, L. Maistrello, A. Dossena, S. Sforza, Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin, Food Res. Int. 105 (2018) 812–820.
DOI: 10.1016/J.FOODRES.2017.12.012
Google Scholar
[7]
R. Smets, B. Verbinnen, I. Van De Voorde, G. Aerts, J. Claes, M. Van Der Borght, Sequential Extraction and Characterisation of Lipids, Proteins, and Chitin from Black Soldier Fly (Hermetia illucens) Larvae, Prepupae, and Pupae, Waste and Biomass Valorization. 11 (2020) 6455–6466.
DOI: 10.1007/s12649-019-00924-2
Google Scholar
[8]
M. Kaya, V. Baublys, E. Can, I. Šatkauskienė, B. Bitim, V. Tubelytė, T. Baran, Comparison of physicochemical properties of chitins isolated from an insect (Melolontha melolontha) and a crustacean species (Oniscus asellus), Zoomorphology. 133 (2014) 285–293.
DOI: 10.1007/s00435-014-0227-6
Google Scholar
[9]
G. Bosch, H.H.E. van Zanten, A. Zamprogna, M. Veenenbos, N.P. Meijer, H.J. van der Fels-Klerx, J.J.A. van Loon, Conversion of organic resources by black soldier fly larvae: Legislation, efficiency and environmental impact, J. Clean. Prod. 222 (2019) 355–363.
DOI: 10.1016/J.JCLEPRO.2019.02.270
Google Scholar
[10]
S. Bußler, B.A. Rumpold, E. Jander, H.M. Rawel, O.K. Schlüter, Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae, Heliyon. 2 (2016) e00218.
DOI: 10.1016/J.HELIYON.2016.E00218
Google Scholar
[11]
W.S. Wan Ngah, L.C. Teong, R.H. Toh, M.A.K.M. Hanafiah, Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan-zeolite composites, Chem. Eng. J. 223 (2013) 231–238.
DOI: 10.1016/j.cej.2013.02.090
Google Scholar
[12]
H. Wang, J. Qian, F. Ding, Emerging Chitosan-Based Films for Food Packaging Applications, J. Agric. Food Chem. (2018).
DOI: 10.1021/acs.jafc.7b04528
Google Scholar
[13]
International organization for standardization, ISO 14040: Environmental management–life cycle assessment—Principles and framework, 2006.
Google Scholar
[14]
F. Colangelo, I. Farina, M. Travaglioni, C. Salzano, R. Cioffi, A. Petrillo, Eco-efficient industrial waste recycling for the manufacturing of fibre reinforced innovative geopolymer mortars: Integrated waste management and green product development through LCA, J. Clean. Prod. 312 (2021) 127777.
DOI: 10.1016/j.jclepro.2021.127777
Google Scholar
[15]
J.S. Adiansyah, M. Rosano, S. Vink, G. Keir, A framework for a sustainable approach to mine tailings management: Disposal strategies, J. Clean. Prod. 108 (2015) 1050–1062.
DOI: 10.1016/j.jclepro.2015.07.139
Google Scholar
[16]
D. Purkayastha, S. Sarkar, Physicochemical Structure Analysis of Chitin Extracted from Pupa Exuviae and Dead Imago of Wild Black Soldier Fly (Hermetia illucens), J. Polym. Environ. 28 (2020) 445–457.
DOI: 10.1007/s10924-019-01620-x
Google Scholar
[17]
N.H. Marei, E.A. El-Samie, T. Salah, G.R. Saad, A.H.M. Elwahy, Isolation and characterization of chitosan from different local insects in Egypt, Int. J. Biol. Macromol. 82 (2016) 871–877.
DOI: 10.1016/J.IJBIOMAC.2015.10.024
Google Scholar
[18]
I. Muñoz, C. Rodríguez, D. Gillet, B. M. Moerschbacher, Life cycle assessment of chitosan production in India and Europe, Int. J. Life Cycle Assess. 23 (2018) 1151–1160.
DOI: 10.1007/s11367-017-1290-2
Google Scholar
[19]
European Commission - Joint Research Centre - Institute for Environment and Sustainability, International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance., 2010.
DOI: 10.1007/978-94-007-1899-9_11
Google Scholar
[20]
Pré-Sustainability B.V., SimaPro, (2022). https://simapro.com/.
Google Scholar
[21]
M.A.J. Huijbregts, Z.J.N. Steinmann, P.M.F. Elshout, G. Stam, F. Verones, M. Vieira, M. Zijp, A. Hollander, R. van Zelm, ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level, Int. J. Life Cycle Assess. 22 (2017) 138–147.
DOI: 10.1007/s11367-016-1246-y
Google Scholar
[22]
A.D. Ramirez, A. Boero, B. Rivela, A.M. Melendres, S. Espinoza, D.A. Salas, Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?, Renew. Sustain. Energy Rev. 134 (2020) 110373.
DOI: 10.1016/J.RSER.2020.110373
Google Scholar
[23]
R. Smets, B. Verbinnen, I. Van De Voorde, G. Aerts, J. Claes, · Mik, V. Der Borght, Sequential Extraction and Characterisation of Lipids, Proteins, and Chitin from Black Soldier Fly (Hermetia illucens) Larvae, Prepupae, and Pupae, Waste and Biomass Valorization. 11 (2020) 6455–6466.
DOI: 10.1007/s12649-019-00924-2
Google Scholar
[24]
A. Franco, C. Scieuzo, R. Salvia, A.M. Petrone, E. Tafi, A. Moretta, E. Schmitt, P. Falabella, Lipids from Hermetia illucens, an Innovative and Sustainable Source, Sustain. 2021, Vol. 13, Page 10198. 13 (2021) 10198.
DOI: 10.3390/SU131810198
Google Scholar
[25]
ChemAnalyst, Hydrochloric Acid Prices, News, Demand & Supply | ChemAnalyst, (2022). https://www.chemanalyst.com/Pricing-data/hydrochloric-acid-61%0A.
Google Scholar
[26]
ChemAnalyst, Caustic Soda Prices, Price, Pricing, Market Analysis | ChemAnalyst, (2022). https://www.chemanalyst.com/Pricing-data/caustic-soda-3 (accessed February 25, 2022).
Google Scholar
[27]
ChemAnalyst, N-Hexane Prices, News, Market Analysis | ChemAnalyst, (2022). https://www.chemanalyst.com/Pricing-data/n-hexane-1151 (accessed February 25, 2022).
Google Scholar
[28]
P. Graceraj Ponnusamy, S. Mani, Life cycle assessment of manufacturing cellulose nanofibril‑reinforced chitosan composite films for packaging applications, Int. J. Life Cycle Assess. (2022) 1–15.
DOI: 10.1007/s11367-022-02035-y
Google Scholar
[29]
R. Rosa, R. Spinelli, P. Neri, M. Pini, S. Barbi, M. Montorsi, L. Maistrello, A. Marseglia, A. Caligiani, A.M. Ferrari, Life Cycle Assessment of Chemical vs Enzymatic-Assisted Extraction of Proteins from Black Soldier Fly Prepupae for the Preparation of Biomaterials for Potential Agricultural Use, ACS Sustain. Chem. Eng. 8 (2020) 14752–14764.
DOI: 10.1021/acssuschemeng.0c03795
Google Scholar
[30]
M.R. Yates, C.Y. Barlow, Life cycle assessments of biodegradable, commercial biopolymers—A critical review, Resour. Conserv. Recycl. 78 (2013) 54–66. https://doi.org/.
DOI: 10.1016/J.RESCONREC.2013.06.010
Google Scholar
[31]
A. Kendall, A life cycle assessment of biopolymer production from material recovery facility residuals, Resour. Conserv. Recycl. 61 (2012) 69–74. https://doi.org/.
DOI: 10.1016/J.RESCONREC.2012.01.008
Google Scholar
[32]
V. Piemonte, F. Gironi, Land-use change emissions: How green are the bioplastics?, Environ. Prog. Sustain. Energy. 30 (2011) 685–691.
DOI: 10.1002/EP.10518
Google Scholar
[33]
P.M. Rojas-Bringas, G.E. De-la-Torre, F.G. Torres, Influence of the source of starch and plasticizers on the environmental burden of starch-Brazil nut fiber biocomposite production: A life cycle assessment approach, Sci. Total Environ. 769 (2021) 144869. https://doi.org/.
DOI: 10.1016/J.SCITOTENV.2020.144869
Google Scholar
[34]
T.A. Hottle, M.M. Bilec, A.E. Landis, Sustainability assessments of bio-based polymers, Polym. Degrad. Stab. 98 (2013) 1898–1907. https://doi.org/.
DOI: 10.1016/J.POLYMDEGRADSTAB.2013.06.016
Google Scholar
[35]
K. Cogollo-Herrera, H. Bonfante-Álvarez, G. De Ávila-Montiel, A.H. Barros, Á.D. González-Delgado, Techno-economic sensitivity analysis of large scale chitosan production process from shrimp shell wastes, Chem. Eng. Trans. 70 (2018) 2179–2184. https://doi.org/.
Google Scholar
[36]
D. Gómez-Ríos, R. Barrera-Zapata, R. Ríos-Estepa, Comparison of process technologies for chitosan production from shrimp shell waste: A techno-economic approach using Aspen Plus®, Food Bioprod. Process. 103 (2017) 49–57.
DOI: 10.1016/j.fbp.2017.02.010
Google Scholar
[37]
H.C. Nguyen, S.H. Liang, S.Y. Li, C.H. Su, C.C. Chien, Y.J. Chen, D.T.M. Huong, Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production, J. Taiwan Inst. Chem. Eng. 85 (2018) 165–169.
DOI: 10.1016/j.jtice.2018.01.035
Google Scholar
[38]
F. Chemat, M.A. Vian, Larvae Mediated Valorization of Industrial , Agriculture and Food Wastes : Biorefinery Concept and Products, Processes. 8 (2020) 857. https://doi.org/.
DOI: 10.3390/pr8070857
Google Scholar
[39]
S. Ng, B. Song, J.G. Fernandez, Environmental attributes of fungal-like adhesive materials and future directions for bioinspired manufacturing, J. Clean. Prod. 282 (2021) 125335.
DOI: 10.1016/j.jclepro.2020.125335
Google Scholar