Recovery of Silica from Sidoarjo Mud by Alkali Fusion

Article Preview

Abstract:

Sidoarjo mud contains potentially valuable minerals, the largest content of which is silica. Silica decomposition from Sidoarjo mud can be done by using alkaline fusion method. The purpose of this study is the recovery of silica from the Sidoarjo mud against variations in Na2CO3 alkaline fusion time. Stages Sidoarjo mud mass ratio Na2CO3 1:3 is inserted into the furnace at a temperature of 700°C with a long alkaline fusion time of 1:1.5;2;2.5; and 3 hours. Based on the calculation results, the best % recovery occurred for 3 hours, which was 48.3%. It can be concluded that the alkaline fusion time can affect the silica decomposition of the Sidoarjo mud

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1113)

Pages:

127-132

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.P. Hochstein and S. Sudarman, "Monitoring of LUSI Mud-Volcano - a Geo-Pressured System, Java, Indonesia," Proc. World Geotherm. Congr., no. June 2006, p.25–29, 2010.

Google Scholar

[2] B. G. S. Plumlee et al., "Preliminary Analytic al Results for a Mud Sample Collected from the LUSI Mud Volcano, Sidoarjo, East Java, Indonesia," 2008.

DOI: 10.3133/ofr20081019

Google Scholar

[3] A. Mazzini, "10 years of Lusi eruption: Lessons learned from multidisciplinary studies (LUSI LAB)," Mar. Pet. Geol., vol. 90, no. December 2017, p.1–9, 2018.

DOI: 10.1016/j.marpetgeo.2017.12.025

Google Scholar

[4] S. J. Suprapto, R. Gunradi, and Y. R. Ramli, "Geokimia Sebaran Unsur Logam Pada Endapan Lumpur Sidoarjo," Bul. Sumber Daya Geol., vol. 2, no. 2, p.4–13, 1970.

DOI: 10.47599/bsdg.v2i2.209

Google Scholar

[5] H. T. Wibowo, B. Pratisho, C. Prasetyadi, and F. Yudiantoro, "Potensi Unsur Tanah Jarang (Rare Earth Elements) Di Lumpur Panas," p.533–539, 2022.

Google Scholar

[6] R. Junaidi, A. Hasan, and M. Zamhari, "Karakteristik dan kalsinasi lumpur sidoarjo (lusi)," no. 1998, p.192–196, 2018.

Google Scholar

[7] M.F. Nuruddin, R. Bayuaji, M. B. Masilamami, and T. R. Riyanto, "Sidoarjo Mud : A Potential Cement Replacement Material," vol. 12, no. 1, p.18–22, 2010.

Google Scholar

[8] D. Hardjito, G. M. Wibowo, and D. Christianto, "Pozzolanic Activity Assessment of LUSI (LUmpur SIdoarjo) Mud in Semi High Volume Pozzolanic Mortar," vol. L, p.1654–1660, 2012.

DOI: 10.3390/ma5091654

Google Scholar

[9] A.M. Abdel-rehim, "A new technique for extracting zirconium form Egyptian zircon concentrate," vol. 76, p.234–243, 2005.

DOI: 10.1016/j.minpro.2005.02.004

Google Scholar

[10] W. Mayangsari et al., "DECOMPOSITION OF FERRONICKEL SLAG THROUGH ALKALI FUSION IN THE," vol. 12, p.5–7, 2021.

DOI: 10.15587/1729-4061.2021.217579

Google Scholar

[11] S. Wu, L. Wang, L. Zhao, and P. Zhang, "Recovery of Rare Earth Elements from Phosphate Rock by Hydrometallurgical Processes - A Critical Review," p.1–111.

Google Scholar

[12] R. P. N. Narayanan, N. K. Kazantzis, and M. H. Emmert, "Selective Process Steps for the Recovery of Scandium from Jamaican Bauxite Residue ( Red Mud )," 2017.

DOI: 10.1021/acssuschemeng.7b03968

Google Scholar

[13] J. Liu, J. Song, T. Qi, C. Zhang, and J. Qu, "Controlling the formation of Na2ZrSiO5 in alkali fusion process for zirconium oxychloride production," Adv. Powder Technol., vol. 27, no. 1, p.1–8, 2016.

DOI: 10.1016/j.apt.2015.08.005

Google Scholar

[14] A. Yustanti, F. A. F. Ode, and E. Sulistiyono, "Primary study of KOH alkali fusion – nitric acid leaching process in extraction of West Kalimantan zircon concentrate Primary study of KOH alkali fusion – nitric acid leaching process in extraction of West Kalimantan zircon concentrate," 2020.

DOI: 10.1088/1757-899X/763/1/012065

Google Scholar

[15] A. B. Prasetyo et al., "Magnesium Extraction of Ferronickel Slag Processed by Alkali Fusion and Hydrochloric Acid Leaching," J. Min. Metall. Sect. B Metall., vol. 57, no. 2, p.225–233, 2021.

DOI: 10.2298/JMMB200224018P

Google Scholar

[16] Y. Zhang, H. Li, and X. Yu, "Recovery of iron from cyanide tailings with reduction roasting – water leaching followed by magnetic separation ଝ," J. Hazard. Mater., vol. 213–214, p.167–174, 2012.

DOI: 10.1016/j.jhazmat.2012.01.076

Google Scholar

[17] K. K. Windya, W. Wilopo, and F. Anggara, "KARAKTERISASI DAN PEMANFAATAN LUMPUR SIDOARJO UNTUK," no. December 2018, 2019.

DOI: 10.33536/jg.v6i3.242

Google Scholar

[18] U. Hernawan and K. Budiono, "Karakteristik dan distribusi lumpur sidoarjo sepanjang sungai estuari dan perariran porong," Angew. Chemie Int. Ed. 6(11), 951–952., p.5–24, 1967.

DOI: 10.32693/jgk.11.2.2013.234

Google Scholar

[19] A. Antoni, R. Geman, R. R. Tjondro, J. Anggono, and D. Hardjito, "Effects of calcination temperature of LUSI mud on the compressive strength of geopolymer mortar," Adv. Mater. Res., vol. 626, p.224–228, 2013.

DOI: 10.4028/www.scientific.net/AMR.626.224

Google Scholar

[20] A. Susilo et al., "Coronavirus Disease 2019: Tinjauan Literatur Terkini," J. Penyakit Dalam Indones., vol. 7, no. 1, p.45, 2020.

DOI: 10.7454/jpdi.v7i1.415

Google Scholar

[21] J. Pan, B. Vaziri, M. Rezaee, and C. Zhou, "Recovery of rare earth elements from coal fl y ash through sequential chemical roasting , water leaching , and acid leaching processes," J. Clean. Prod., vol. 284, p.124725, 2021.

DOI: 10.1016/j.jclepro.2020.124725

Google Scholar