[1]
"The European Parliament and the Council of the European Union (2012) Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council," Official Journal of the European Union, p.83–295, 2012.
DOI: 10.5040/9781782258674.0007
Google Scholar
[2]
H. Noureddini and S. E. Harmeier, "Enzymatic Glycerolysis of Soybean Oil," JAOCS, vol. 75, no. 10, p.1359–1365, 1998.
DOI: 10.1007/s11746-998-0183-8
Google Scholar
[3]
Inger. Elfman-Borjesson and Magnus. Harrod, "Synthesis of Monoglycerides by Glycerolysis of Rapeseed Oil Using Immobilized Lipase," JAOCS, vol. 76, no. 6, p.701–707, 1999.
DOI: 10.1007/s11746-999-0162-8
Google Scholar
[4]
H. Noureddini, D. W. Harkey, and M. R. Gutsman, "A Continuous Process for the Glycerolysis of Soybean Oil," Biomaterials, vol. 15, 2004, [Online]. Available: https://digitalcommons.unl.edu/chemeng_biomaterials/15
DOI: 10.1007/s11746-004-0882-y
Google Scholar
[5]
V. Norn, Emulsifiers in Food Technology, 2nd ed. Wiley Blackwell, 2015.
Google Scholar
[6]
F. Zaccheria, M. Mariani, and N. Ravasio, "The use of rice bran oil within a biorefinery concept," Chemical and Biological Technologies in Agriculture, vol. 2, no. 1, 2015.
DOI: 10.1186/s40538-015-0049-x
Google Scholar
[7]
B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, and etc., "Deep Eutectic Solvents: A Review of Fundamentals and Applications," Chem Rev, 2020.
Google Scholar
[8]
S. T. Williamson, K. Shahbaz, F. S. Mjalli, I. M. AlNashef, and M. M. Farid, "Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol," Renew Energy, vol. 114, p.480–488, 2017.
DOI: 10.1016/j.renene.2017.07.046
Google Scholar
[9]
S. Sun, Y. Lv, and G. Wang, "Enhanced surfactant production using glycerol-based deep eutectic solvent as a novel reaction medium for enzymatic glycerolysis of soybean oil," Ind Crops Prod, vol. 151, Sep. 2020.
DOI: 10.1016/j.indcrop.2020.112470
Google Scholar
[10]
S. Zullaikah, N. D. Wibowo, I. M. G. E. D. Wahyudi, and M. Rachimoellah, "Deacidification of crude rice bran oil (Crbo) to remove ffa and preserve γ-oryzanol using deep eutectic solvents (des)," in Materials Science Forum, Trans Tech Publications Ltd, 2019, p.109–114.
DOI: 10.4028/www.scientific.net/MSF.964.109
Google Scholar
[11]
S. X. Liu and P. K. Mamidipally, "Quality comparison of rice bran oil extracted with d-limonene and hexane," Cereal Chem, vol. 82, no. 2, p.209–215, Mar. 2005.
DOI: 10.1094/CC-82-0209
Google Scholar
[12]
D. K. Bhattacharyya, M. M. Chakrabarty, R. S. Vaidyanathan, and A. C. Bhattacharyya, "A Critical Study of the Refining of Rice Bran Oil," JAOCS, vol. 60, no. 2, Feb. 1983.
DOI: 10.1007/bf02543545
Google Scholar
[13]
M. B. Domah and M. A. Askar, "Physicochemical Characterization of Rice (Oryza sativa) Bran Oil from Some Egyptian Rice Varieties," 2017.
DOI: 10.21608/jfds.2017.38207
Google Scholar
[14]
J. C. J. Bart, N. Palmeri, and S. Cavallaro, "Emerging new energy crops for biodiesel production," in Biodiesel Science and Technology, Elsevier, 2010, p.226–284.
DOI: 10.1533/9781845697761.226
Google Scholar
[15]
E. Alexa, A. Dragomirescu, G. Pop, C. Jianu, and D. Dragos, "The use of FT-IR spectroscopy in the identification of vegetable oils adulteration," J Food Agric Environ, vol. 7, no. 2, p.20–24, Apr. 2005, [Online]. Available: www.world-food.net
Google Scholar
[16]
Irnawati, S. Riyanto, S. Martono, and A. Rohman, "Determination of sesame oil, rice bran oil and pumpkin seed oil in ternary mixtures using FTIR spectroscopy and multivariate calibrations," Food Res, vol. 4, no. 1, p.135–142, Feb. 2020.
DOI: 10.26656/fr.2017.4(1).260
Google Scholar
[17]
S. F. Sim and W. Ting, "An automated approach for analysis of Fourier Transform Infrared (FTIR) spectra of edible oils," Talanta, vol. 88, p.537–543, Jan. 2012.
DOI: 10.1016/j.talanta.2011.11.030
Google Scholar
[18]
Kumar; Sanjeet, K. Jyotirmayee, and M. Sarangi, "Thin Layer Chromatography : A Tool of Biotechnology for Isolation of Bioactive Compounds from Medicinal Plants," Int. J. Pharm.Sci. Rev. Res., vol. 18, no. 1, p.126–132, 2013.
Google Scholar
[19]
Q. Zhang, K. de Oliveira Vigier, S. Royer, and F. Jérôme, "Deep eutectic solvents: Syntheses, properties and applications," Chem Soc Rev, vol. 41, no. 21, p.7108–7146, Oct. 2012.
DOI: 10.1039/c2cs35178a
Google Scholar
[20]
N. Rodriguez Rodriguez, L. MacHiels, and K. Binnemans, "P-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Solubilizing Metal Oxides," ACS Sustain Chem Eng, vol. 7, no. 4, p.3940–3948, Feb. 2019.
DOI: 10.1021/acssuschemeng.8b05072
Google Scholar
[21]
P. V. de Almeida Pontes, I. Ayumi Shiwaku, G. J. Maximo, and E. A. Caldas Batista, "Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization," Food Chem, vol. 352, Aug. 2021.
DOI: 10.1016/j.foodchem.2021.129346
Google Scholar
[22]
A. P. Abbott, "Model for the conductivity of ionic liquids based on an infinite dilution of holes," ChemPhysChem, vol. 6, no. 12, p.2502–2505, 2005.
DOI: 10.1002/cphc.200500283
Google Scholar
[23]
H. Ghaedi, M. Ayoub, S. Sufian, S. M. Hailegiorgis, G. Murshid, and S. N. Khan, "Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation," Journal of Chemical Thermodynamics, vol. 116, p.50–60, Jan. 2018.
DOI: 10.1016/j.jct.2017.08.029
Google Scholar
[24]
H. Ghaedi, M. Ayoub, S. Sufian, B. Lal, and Y. Uemura, "Thermal stability and FT-IR analysis of Phosphonium-based deep eutectic solvents with different hydrogen bond donors," J Mol Liq, vol. 242, p.395–403, Sep. 2017.
DOI: 10.1016/j.molliq.2017.07.016
Google Scholar
[25]
R. Gautam, "Theoretical and Experimental Study of Choline Chloride-Carboxylic Acid Deep Eutectic Solvents and their Hydrogen Bonds," Louisiana Tech University, 2020. [Online]. Available: https://digitalcommons.latech.edu/theses
DOI: 10.1016/j.molstruc.2020.128849
Google Scholar
[26]
C. Shen et al., "A green one-pot method for simultaneous extraction and transesterification of seed oil catalyzed by a p-toluenesulfonic acid based deep eutectic solvent," Ind Crops Prod, vol. 152, Sep. 2020.
DOI: 10.1016/j.indcrop.2020.112517
Google Scholar
[27]
A. Hayyan, M. A. Hashim, M. Hayyan, F. S. Mjalli, and I. M. Alnashef, "A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent," J Clean Prod, vol. 65, p.246–251, Feb. 2014.
DOI: 10.1016/j.jclepro.2013.08.031
Google Scholar
[28]
Y. Lv, S. Sun, and X. Chen, "Enhanced environment friendly surfactant production by the glycerolysis of castor oil using amino acid ionic liquid as a catalyst," Ind Crops Prod, vol. 170, Oct. 2021.
DOI: 10.1016/j.indcrop.2021.113680
Google Scholar
[29]
W. Q. Liu, S. Z. Yang, H. Z. Gang, B. Z. Mu, and J. F. Liu, "Efficient emulsifying properties of monoglycerides synthesized via simple and green route," J Dispers Sci Technol, vol. 41, no. 12, p.1902–1910, Oct. 2020.
DOI: 10.1080/01932691.2019.1638271
Google Scholar
[30]
C. C. Loi, G. T. Eyres, and E. J. Birch, "Effect of mono- and diglycerides on physical properties and stability of a protein-stabilised oil-in-water emulsion," J Food Eng, vol. 240, p.56–64, Jan. 2019.
DOI: 10.1016/j.jfoodeng.2018.07.016
Google Scholar