Preliminary Study of the Effect of pH on Ce, Nd, La, Pr Recovery from REOH Concentrate

Article Preview

Abstract:

The separation of uranium, thorium, and rare earth elements (REE) from monazite sand was carried out using the PLUTHO pilot plant facility. The REEs were produced in the form of hydroxide concentrates (REOH). Further separation process must be carried out to obtain high-purity elements for application in advanced industries such as polisher material for hard materials, infrared protective glass, and Ni-metal hydride batteries. The Major Element of REEs are Cerium (Ce), Lanthanum (La), Neodynium (Nd), and Praseodymium (Pr). Those elements can be separated by various methods such as fractional precipitation, extraction, ion exchange, and others. This research was carried out using the Fractional Precipitation method. Rare earth elements have chemical properties that permit ready dissolution and easy precipitation. The fractional precipitating reagent commonly used is NH4OH because it will not contaminate the precipitate due to the volatility of NH3. The parameter used in this preliminary study was pH from 4 to 9. The separation process was started with the dissolution of the REOH concentrate in a solution of HNO3 to obtain RE nitrate. After the dissolution process, oxidation and precipitation were carried out by the addition of KMnO4 as an oxidizing agent and Na2CO3 as a precipitating agent at pH 4 to obtain high recovery efficiency of cerium. The precipitation was pH varies continued by pH adjustment using NH4OH starting from pH 4 to pH 9 to separate La, Nd, and Pr. The analysis of Ce, La, Nd, and Pr concentration was carried out using ICP-OES. The optimum pH recovery for Ce, Nd, and Pr was found at pH 4 with a concentration of 19986.4 ppm, 3532.34 ppm, and 3796.81 ppm, respectively, while at pH 8.5 for La with a concentration of 5846.59 ppm.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1113)

Pages:

133-138

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pusat Sumber Daya Mineral Batubara dan Panas Bumi, Potensi Logam Tanah Jarang Di Indonesia, 1st ed., Kementerian Energi dan Sumber Daya Mineral, Bandung, 2019.

DOI: 10.21787/mp.3.2.2019.109-118

Google Scholar

[2] Pusat Data dan Teknologi Informasi Energi dan Sumber Daya Mineral, Kajian Potensi Mineral Ikutan Pada Pertambangan Timah, Kementerian Energi dan Sumber Daya Mineral, Jakarta, 2017.

DOI: 10.21787/mp.3.2.2019.109-118

Google Scholar

[3] D. Yan, S. Ro, S. O, S. Kim, On the Global Rare Earth Elements Utilization and Its Supply-Demand in the Future, in: Earth Environ. Sci., IOP Publishing, 2020.

DOI: 10.1088/1755-1315/508/1/012084

Google Scholar

[4] Q. He, Experimental study on polishing performance of CeO2 and nano-SiO2 mixed abrasive, Appl. Nanosci. 8 (2018) 163–171.

DOI: 10.1007/s13204-018-0657-4

Google Scholar

[5] J.A. Mcneice, An Investigation Into Cerium Oxidation Under Acidic Conditions, Queen's University, 2018.

Google Scholar

[6] C.K. Gupta, N. Krishnamurthy, Extractive Metallurgy of Rare Earths, CRC Press, New York, 2005.

Google Scholar

[7] Y. Wu, M. Song, Q. Zhang, W. Wang, Review of rare-earths recovery from polishing powder waste, Resour. Conserv. Recycl. 171 (2021).

Google Scholar

[8] F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions, Miner. Eng. 56 (2014) 10–28.

DOI: 10.1016/j.mineng.2013.10.021

Google Scholar

[9] M.E. De Vasconcellos, C.A.D.S. Queiroz, A. Abrão, Sequential separation of the yttrium - Heavy rare earths by fractional hydroxide precipitation, J. Alloys Compd. 374 (2004) 405–407.

DOI: 10.1016/j.jallcom.2003.11.038

Google Scholar

[10] M.. Purwani, K. Trinopiawan, H. Poernomo, Suyanti, N. Pusporini, R.A. Amiliana, Separation of Ce, La and Nd in rare earth hydroxide (REOH) by oxidation with potassium permanganate and precipitation, J. Phys. 1198 (2019) 32003. https://doi.org/.

DOI: 10.1088/1742-6596/1198/3/032003

Google Scholar

[11] R.D. Abreu, C.A. Morais, Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide, Miner. Eng. 23 (2010) 536–540.

DOI: 10.1016/j.mineng.2010.03.010

Google Scholar

[12] T. Handini, B. Ehb, S. Sukmajaya, D. Biyantoro, Pembuatan Y Oksida Melalui Proses Pengendapan, in: Prosiding Seminar Nasional Teknologi Energi Nuklir, 2016: p.281–288.

Google Scholar

[13] A. Novriyanisti, R. Prassanti, K.S. Widana, Pemisahan Unsur-unsur pada Monasit Bangka dengan Pengendapan Bertingkat, Eksplorium. 42 (2021) 69-76.

DOI: 10.17146/eksplorium.2021.42.1.6093

Google Scholar

[14] I. Hastiawan, F. Firmansyah, Juliandri, D.R. Eddy, A.R. Noviyanti, Pemisahan Lanthanum Dari Limbah Hasil Pengolahan Timah Dengan Menggunakan Metode Pengendapan Bertingkat, Chim. Nat. Acta. 4 (2016) 93–96. https://doi.org/.

DOI: 10.24198/cna.v4.n2.10678

Google Scholar

[15] A. Yulandra, I.M. Bendiyasa, H.T. Bayu, Optimasi Pembuatan Konsentrat Y(OH)3 Dan Nd(OH)3 Dari Konsentrat Tailing Zirkon Dengan Metode: "Response Surface Methodology, Universitas Gadjah Mada, 2020.

DOI: 10.32423/jmi.2020.v42.28-34

Google Scholar

[16] S. Effendi, A. Mutalib, A. Anggraeni, H.H. Bahti, Penggunaan Desain Plackett Burman untuk Seleksi Parameter Pemisahan Logam Tanah Jarang Kelompok Sedang dari Logam Tanah Jarang Kelompok Lainnya dengan Metode Pengendapan., Al-Kimiya. 7 (2020) 1–6.

DOI: 10.15575/ak.v7i1.6486

Google Scholar

[17] T. Moeller, H.. Kremers, The Basicity Characteristics of Scandium, Yttrium, and the Rare Earth Elements, Chem. Rev. 37 (1945) 97–159. https://doi.org/.

DOI: 10.1021/cr60116a003

Google Scholar

[18] D. Qi, Chemical Separation Method1. Qi D. Chemical Separation Method. In: Qi DBT-H of RE, editor. Hydrometallurgy of Rare Earths [Internet]. Elsevier; 2018. p.671–741. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128139202000076, in: D.B.T.-H. of R.E. Qi (Ed.), Hydrometall. Rare Earths, Elsevier, 2018: p.671–741.

DOI: 10.1016/B978-0-12-813920-2.00007-6

Google Scholar

[19] N.I. Perwira, K.T. Basuki, D. Biyantoro, N. Effendy, Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process, in: IOP Conf. Ser. Mater. Sci. Eng., 2018.

DOI: 10.1088/1757-899X/349/1/012044

Google Scholar