Silver Nanowires (AgNWs) Post-Treatment Effect in Application of Flexible Transparent and Conductive Electrodes: A Mini Review

Article Preview

Abstract:

Transparent flexible electrodes (TFEs) are extremely crucial for expanding flexible and wearable electronic devices. Silver nanowires (AgNWs) have been extensively investigated as an alternative to replace Indium Tin Oxide (ITO) as a commercial TFE due to their high conductivity, transparency, and flexibility. AgNWs have replaced ITO-based electrodes as the preferred approach in flexible, transparent, and conductive electrodes (FTCE). AgNWs outperform other materials, such as Reduced Graphene Oxide (RGO), ceramic material, Carbon Nanotubes (CNT), and conductive polymers, in terms of electrical conductivity, transmittance, flexibility, and low sheet resistance. Numerous techniques, including as electrospinning, spray coating, spin coating, and doctor blades, are used to use AgNWs as flexible substrates. Seed-based growth and template-assisted synthesis are two fundamental synthesis techniques that could be used to generate AgNWs. However, poor adhesiveness, and thermal and electrical stability, begin to be bottlenecks for AgNWs as high deployment in a variety of devices. So AgNWs synthesis process began to shift to other methods, such as wet chemical and polyol. In this paper, short and clear summary of various advances including post-treatment methods such as UV radiation, microwave, sonication, quenching, and so on is conducted to be one step forward to test mechanical properties and to improve AgNWs performance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1118)

Pages:

47-57

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Yu, X. Liu, H. Dong, X. Wang, dan L. Li, "Flexible high-performance SnO2/AgNWs bilayer transparent conductors for flexible transparent heater applications," Ceram. Int., vol. 47, no. 14, hal. 20379–20386, 2021.

DOI: 10.1016/j.ceramint.2021.04.046

Google Scholar

[2] T. Wang et al., "Recent developments in flexible transparent electrode," Crystals, vol. 11, no. 5, hal. 1–22, 2021.

DOI: 10.3390/cryst11050511

Google Scholar

[3] S. W. Jin et al., "Highly Durable and Flexible Transparent Electrode for Flexible Optoelectronic Applications," ACS Appl. Mater. Interfaces, vol. 10, no. 36, hal. 30706–30715, 2018.

DOI: 10.1021/acsami.8b10190

Google Scholar

[4] M. Wu, H. Zheng, X. Li, dan S. Yu, "Highly transparent low resistance ATO/AgNWs/ATO flexible transparent conductive thin films," Ceram. Int., vol. 46, no. 4, hal. 4344–4350, 2020.

DOI: 10.1016/j.ceramint.2019.10.157

Google Scholar

[5] A. B. V. K. Kumar, J. Jiang, C. W. Bae, D. M. Seo, L. Piao, dan S. H. Kim, "Silver nanowire/polyaniline composite transparent electrode with improved surface properties," Mater. Res. Bull., vol. 57, hal. 52–57, 2014.

DOI: 10.1016/j.materresbull.2014.05.031

Google Scholar

[6] M. A. Shinde, D. J. Lee, B. J. Kim, dan H. Kim, "Highly conductive and smooth surfaced flexible transparent conductive electrode based on silver nanowires," Thin Solid Films, vol. 685, no. June, hal. 366–371, 2019.

DOI: 10.1016/j.tsf.2019.06.054

Google Scholar

[7] S. Arulkumar et al., "AgNWs-a-TiOx: a scalable wire bar coated core–shell nanocomposite as transparent thin film electrode for flexible electronics applications," J. Mater. Sci. Mater. Electron., vol. 32, no. 5, hal. 6454–6464, 2021.

DOI: 10.1007/s10854-021-05362-2

Google Scholar

[8] S. Hou, J. Liu, F. Shi, G. X. Zhao, J. W. Tan, dan G. Wang, "Recent Advances in Silver Nanowires Electrodes for Flexible Organic/Perovskite Light-Emitting Diodes," Front. Chem., vol. 10, no. March, hal. 1–5, 2022.

DOI: 10.3389/fchem.2022.864186

Google Scholar

[9] R. D. Abdel-Rahim, A. M. Nagiub, dan M. A. Taher, "Electrical and Optical Properties of Flexible Transparent Silver Nanowires electrodes," Int. J. Thin Film Sci. Technol., vol. 11, no. 1, hal. 123–132, 2022.

DOI: 10.18576/ijtfst/110116

Google Scholar

[10] J. J. Jin et al., "Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials," J. Power Sources, vol. 482, no. September 2020, hal. 228953, 2021.

DOI: 10.1016/j.jpowsour.2020.228953

Google Scholar

[11] L. O. M. Cuasay, F. L. M. Salazar, dan M. D. L. Balela, "Flexible tactile sensors based on silver nanowires: material synthesis, microstructuring, assembly, performance, and applications," Emergent Mater., vol. 5, no. 1, hal. 51–76, 2022.

DOI: 10.1007/s42247-022-00371-1

Google Scholar

[12] L. Zhang et al., "Recent progress for silver nanowires conducting film for flexible electronics," J. Nanostructure Chem., vol. 11, no. 3, hal.323–341, 2021.

DOI: 10.1007/s40097-021-00436-3

Google Scholar

[13] Y. Cheng et al., "Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion," Compos. Sci. Technol., vol. 215, no. September, hal. 109023, 2021.

DOI: 10.1016/j.compscitech.2021.109023

Google Scholar

[14] M. Y. Liu et al., "Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial," Nano Energy, vol. 87, no. May, hal. 106181, 2021.

DOI: 10.1016/j.nanoen.2021.106181

Google Scholar

[15] N. P. Kovalec et al., "Agglomeration of Ensembles of Silver Nanowires, Obtained by the Method of Template Synthesis," Bull. Russ. Acad. Sci. Phys., vol. 85, no. 8, hal. 854–857, 2021.

DOI: 10.3103/S1062873821080116

Google Scholar

[16] J. Liu, Y. Fu, A. Guo, C. Wang, R. Huang, dan X. Zhang, "Fabrication of silver nanowires in situ in Si chip based on a novel electrochemical method," 2008 2nd IEEE Int. Nanoelectron. Conf. INEC 2008, hal. 424–427, 2008.

DOI: 10.1109/INEC.2008.4585520

Google Scholar

[17] X. T. Pan et al., "Free-Standing Single Ag Nanowires for Multifunctional Optical Probes," ACS Appl. Mater. Interfaces, vol. 13, no. 16, hal. 19023–19030, 2021.

DOI: 10.1021/acsami.1c02332

Google Scholar

[18] A. Kumar, M. O. Shaikh, dan C. H. Chuang, "Silver nanowire synthesis and strategies for fabricating transparent conducting electrodes," Nanomaterials, vol. 11, no. 3, hal. 1–51, 2021.

DOI: 10.3390/nano11030693

Google Scholar

[19] R. Karimi-Chaleshtori, A. H. Nassajpour-Esfahani, M. R. Saeri, P. Rezai, dan A. Doostmohammadi, "Silver nanowire-embedded PDMS with high electrical conductivity: nanowires synthesis, composite processing and electrical analysis," Mater. Today Chem., vol. 21, hal. 100496, 2021.

DOI: 10.1016/j.mtchem.2021.100496

Google Scholar

[20] M. Ćwik et al., "Controlling plasmon propagation and enhancement via reducing agent in wet chemistry synthesized silver nanowires," Opt. Express, vol. 29, no. 6, hal. 8834, 2021.

DOI: 10.1364/oe.412903

Google Scholar

[21] R. Yang, C. Sui, J. Gong, dan L. Qu, "Silver nanowires prepared by modified AAO template method," Mater. Lett., vol. 61, no. 3, hal. 900–903, 2007.

DOI: 10.1016/j.matlet.2006.06.009

Google Scholar

[22] K. K. R, L. Neelakantan, dan P. Swaminathan, "Template-assisted growth of silver nanowires by electrodeposition," hal. 1–11, 2021, [Daring]. Tersedia pada: http://arxiv.org/abs/2201.04947.

Google Scholar

[23] S. H. Park, H. S. Shin, Y. H. Kim, H. M. Park, dan J. Y. Song, "Template-free and Filamentary Growth of Silver Nanowires: Application to Anisotropic Conductive Transparent Flexible Electrodes," Nanoscale, vol. 5, 2013.

DOI: 10.1039/c2nr33056c

Google Scholar

[24] K. K. Caswell, C. M. Bender, dan C. J. Murphy, "Seedless, surfactantless wet chemical synthesis of silver nanowires," Nano Lett., vol. 3, no. 5, hal. 667–669, 2003.

DOI: 10.1021/nl0341178

Google Scholar

[25] D. Zhang, L. Qi, J. Yang, J. Ma, H. Cheng, dan L. Huang, "Wet Chemical Synthesis of Silver Nanowire Thin Films at Ambient Temperature," Chem. Mater., vol. 16, no. 5, hal. 872–876, 2004.

DOI: 10.1021/cm0350737

Google Scholar

[26] N. T. Nguyen dan J. H. Liu, "Wet chemical synthesis of silver nanowires based on a soft template of cholesteryl pyridine carbamate organogel," Sci. Adv. Mater., vol. 7, no. 7, hal. 1282–1290, 2015.

DOI: 10.1166/sam.2015.2042

Google Scholar

[27] J. Junaidi, M. W. Saputra, R. Marjunus, S. Sembiring, dan S. Hadi, "The quenching and sonication effect on the mechanical strength of silver nanowires synthesized using the polyol method," Molecules, vol. 26, no. 8, 2021.

DOI: 10.3390/molecules26082167

Google Scholar

[28] Y. Li, Y. Li, Z. Fan, H. Yang, X. Yuan, dan C. Wang, "Morphology-controlled silver nanowire synthesis using a cocamidopropyl betaine-based polyol process for flexible and stretchable electronics," RSC Adv., vol. 10, no. 36, hal. 21369–21374, 2020.

DOI: 10.1039/d0ra03140b

Google Scholar

[29] L. Cao et al., "Rapid and facile synthesis of high-performance silver nanowires by a halide-mediated, modified polyol method for transparent conductive films," Nanomaterials, vol. 10, no. 6, 2020.

DOI: 10.3390/nano10061139

Google Scholar

[30] Nasikhudin, Y. Al Fath, H. Rahmadani, M. Diantoro, H. Pujiarti, dan S. A. Aziz, "Propylene Glycol and Glycerol Addition in Forming Silver Nanowires (AgNWs) for Flexible and Conductive Electrode," E3S Web Conf., vol. 400, hal. 4–8, 2023.

DOI: 10.1051/e3sconf/202340001020

Google Scholar

[31] Y. Guo, Y. Hu, X. Luo, S. Lin, J. Hu, dan Y. Liu, "Investigation into the role of poly(vinylpyrrolidone) in the growth of high aspect ratio silver nanowires," Inorg. Chem. Commun., vol. 128, no. December 2020, hal. 108558, 2021.

DOI: 10.1016/j.inoche.2021.108558

Google Scholar

[32] Y. Yang, B. Xu, dan J. Hou, "Solution-Processed Silver Nanowire as Flexible Transparent Electrodes in Organic Solar Cells," Chinese J. Chem., vol. 39, no. 8, hal. 2315–2329, 2021.

DOI: 10.1002/cjoc.202000696

Google Scholar

[33] M. Khademalrasool dan M. D. Talebzadeh, "Rapid synthesis of silver nanowires during the polyol-microwave method and COMSOL multiphysics simulation of electromagnetic heating," Adv. Powder Technol., vol. 32, no. 8, hal. 2916–2928, 2021.

DOI: 10.1016/j.apt.2021.06.009

Google Scholar

[34] H. mei Zhang, Y. Zhang, J. wen Zhang, X. Ye, Y. yuan Li, dan P. Wang, "Characteristic of silver nanowires prepared by polyol method based on orthogonal experimental design," Bull. Mater. Sci., vol. 44, no. 2, 2021.

DOI: 10.1007/s12034-021-02395-5

Google Scholar

[35] C. Salvo-Comino, F. Martin-Pedrosa, C. Garcia-Cabezon, dan M. L. Rodriguez-Mendez, "Silver nanowires as electron transfer mediators in electrochemical catechol biosensors," Sensors (Switzerland), vol. 21, no. 3, hal. 1–13, 2021.

DOI: 10.3390/s21030899

Google Scholar

[36] L. Chen, L. Si, F. Wu, S. Y. Chan, P. Yu, dan B. Fei, "Electrical and mechanical self-healing membrane using gold nanoparticles as localized 'nano-heaters,'" J. Mater. Chem. C, vol. 4, no. 42, hal. 10018–10025, 2016.

DOI: 10.1039/c6tc03699f

Google Scholar

[37] L. Yang, X. Lu, Z. Wang, dan H. Xia, "Diels-Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function," Polym. Chem., vol. 9, no. 16, hal. 2166–2172, 2018.

DOI: 10.1039/c8py00162f

Google Scholar

[38] S. P. Mahulikar, H. R. Sonawane, dan G. Arvind Rao, "Infrared signature studies of aerospace vehicles," Prog. Aerosp. Sci., vol. 43, no. 7–8, hal. 218–245, 2007.

DOI: 10.1016/j.paerosci.2007.06.002

Google Scholar

[39] M. C. Larciprete et al., "Infrared properties of randomly oriented silver nanowires," J. Appl. Phys., vol. 112, no. 8, 2012.

DOI: 10.1063/1.4759374

Google Scholar

[40] Y. Wang et al., "Silver nanowires for anti-counterfeiting," J. Mater., vol. 6, no. 1, hal. 152–157, 2020.

DOI: 10.1016/j.jmat.2020.01.008

Google Scholar

[41] Y. Wang et al., "Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation," Membranes (Basel)., vol. 12, no. 4, hal. 1–21, 2022.

DOI: 10.3390/membranes12040405

Google Scholar

[42] W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, dan V. M. Shalaev, "Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer," Opt. Express, vol. 18, no. 5, hal. 5124, 2010.

DOI: 10.1364/oe.18.005124

Google Scholar

[43] M. Lagrange, D. P. Langley, G. Giusti, C. Jiménez, Y. Bréchet, dan D. Bellet, "Optimization of silver nanowire-based transparent electrodes: Effects of density, size and thermal annealing," Nanoscale, vol. 7, no. 41, hal. 17410–17423, 2015.

DOI: 10.1039/c5nr04084a

Google Scholar

[44] M. Bobinger, D. Angeli, S. Colasanti, P. La Torraca, L. Larcher, dan P. Lugli, "Infrared, transient thermal, and electrical properties of silver nanowire thin films for transparent heaters and energy-efficient coatings," Phys. Status Solidi Appl. Mater. Sci., vol. 214, no. 1, hal. 1–11, 2017.

DOI: 10.1002/pssa.201600466

Google Scholar

[45] M. Becucci et al., "Silver nanowires as infrared-active materials for surface-enhanced Raman scattering," Nanoscale, vol. 10, no. 19, hal. 9329–9337, 2018.

DOI: 10.1039/c8nr00537k

Google Scholar

[46] J. Wang et al., "The effect of ultraviolet radiation on silver nanowire transparent electrode based on flexible polymeric film substrate," IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol., hal. 526–529, 2015.

DOI: 10.1109/NANO.2015.7388656

Google Scholar

[47] S.-L. Lin, Chiao-chi; Lin, Dong-Xuan; Lin, "Ultraviolet Exposure Caused Degradation Problem in Silver Nanowire Transparent Electrode," Nanotechnology, no. 2, hal. 1–34, 2020, [Daring]. Tersedia pada:.

DOI: 10.1088/1361-6528/ab724f

Google Scholar

[48] E. C. Garnett et al., "Self-limited plasmonic welding of silver nanowire junctions," Nat. Mater., vol. 11, no. 3, hal. 241–249, 2012.

DOI: 10.1038/nmat3238

Google Scholar

[49] A. B. V. Kiran Kumar, C. Wan Bae, L. Piao, dan S. H. Kim, "Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze," Mater. Res. Bull., vol. 48, no. 8, hal. 2944–2949, 2013.

DOI: 10.1016/j.materresbull.2013.04.035

Google Scholar

[50] W. H. Chung, S. H. Kim, dan H. S. Kim, "Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes," Sci. Rep., vol. 6, no. February, hal. 1–11, 2016.

DOI: 10.1038/srep32086

Google Scholar

[51] N. Dahal, S. García, J. Zhou, dan S. M. Humphrey, "Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis," ACS Nano, vol. 6, no. 11, hal. 9433–9446, 2012.

DOI: 10.1021/nn3038918

Google Scholar

[52] M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, dan C. O. Kappe, "Microwave-assisted synthesis of colloidal inorganic nanocrystals," Angew. Chemie - Int. Ed., vol. 50, no. 48, hal. 11312–11359, 2011.

DOI: 10.1002/anie.201101274

Google Scholar

[53] Y. Yang, Y. Hu, X. Xiong, dan Y. Qin, "Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method," RSC Adv., vol. 3, no. 22, hal. 8431–8436, 2013.

DOI: 10.1039/c3ra00117b

Google Scholar

[54] M. Zhang et al., "Study of microwave-induced ag nanowire welding for soft electrode conductivity enhancement," Micromachines, vol. 12, no. 6, 2021.

DOI: 10.3390/mi12060618

Google Scholar

[55] P. H. Jung, Y. D. Kim, Y. H. Sung, dan H. Lee, "Microwave welding of silver nanowires for highly transparent conductive electrodes," Phys. Status Solidi Appl. Mater. Sci., vol. 214, no. 8, 2017.

DOI: 10.1002/pssa.201600908

Google Scholar

[56] Z. Duan dan X. Pei, "Effect of Quenching Processes on Microstructure and Mechanical Properties of a High Strength Steel," IOP Conf. Ser. Mater. Sci. Eng., vol. 562, no. 1, 2019.

DOI: 10.1088/1757-899X/562/1/012006

Google Scholar

[57] G. K. Bansal et al., "Influence of quenching strategy on phase transformation and mechanical properties of low alloy steel," Mater. Sci. Eng. A, vol. 826, no. June, hal. 141937, 2021.

DOI: 10.1016/j.msea.2021.141937

Google Scholar

[58] Y. H. Jo et al., "FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V 10 Cr 10 Fe 45 Co x Ni 35−x medium-entropy alloys," Sci. Rep., vol. 9, no. 1, hal. 1–14, 2019.

DOI: 10.1038/s41598-019-39570-y

Google Scholar

[59] A. B. Belonoshko et al., "Quenching of bcc-Fe from high to room temperature at high-pressure conditions: A molecular dynamics simulation," New J. Phys., vol. 11, 2009.

DOI: 10.1088/1367-2630/11/9/093039

Google Scholar