[1]
S. Yu, X. Liu, H. Dong, X. Wang, dan L. Li, "Flexible high-performance SnO2/AgNWs bilayer transparent conductors for flexible transparent heater applications," Ceram. Int., vol. 47, no. 14, hal. 20379–20386, 2021.
DOI: 10.1016/j.ceramint.2021.04.046
Google Scholar
[2]
T. Wang et al., "Recent developments in flexible transparent electrode," Crystals, vol. 11, no. 5, hal. 1–22, 2021.
DOI: 10.3390/cryst11050511
Google Scholar
[3]
S. W. Jin et al., "Highly Durable and Flexible Transparent Electrode for Flexible Optoelectronic Applications," ACS Appl. Mater. Interfaces, vol. 10, no. 36, hal. 30706–30715, 2018.
DOI: 10.1021/acsami.8b10190
Google Scholar
[4]
M. Wu, H. Zheng, X. Li, dan S. Yu, "Highly transparent low resistance ATO/AgNWs/ATO flexible transparent conductive thin films," Ceram. Int., vol. 46, no. 4, hal. 4344–4350, 2020.
DOI: 10.1016/j.ceramint.2019.10.157
Google Scholar
[5]
A. B. V. K. Kumar, J. Jiang, C. W. Bae, D. M. Seo, L. Piao, dan S. H. Kim, "Silver nanowire/polyaniline composite transparent electrode with improved surface properties," Mater. Res. Bull., vol. 57, hal. 52–57, 2014.
DOI: 10.1016/j.materresbull.2014.05.031
Google Scholar
[6]
M. A. Shinde, D. J. Lee, B. J. Kim, dan H. Kim, "Highly conductive and smooth surfaced flexible transparent conductive electrode based on silver nanowires," Thin Solid Films, vol. 685, no. June, hal. 366–371, 2019.
DOI: 10.1016/j.tsf.2019.06.054
Google Scholar
[7]
S. Arulkumar et al., "AgNWs-a-TiOx: a scalable wire bar coated core–shell nanocomposite as transparent thin film electrode for flexible electronics applications," J. Mater. Sci. Mater. Electron., vol. 32, no. 5, hal. 6454–6464, 2021.
DOI: 10.1007/s10854-021-05362-2
Google Scholar
[8]
S. Hou, J. Liu, F. Shi, G. X. Zhao, J. W. Tan, dan G. Wang, "Recent Advances in Silver Nanowires Electrodes for Flexible Organic/Perovskite Light-Emitting Diodes," Front. Chem., vol. 10, no. March, hal. 1–5, 2022.
DOI: 10.3389/fchem.2022.864186
Google Scholar
[9]
R. D. Abdel-Rahim, A. M. Nagiub, dan M. A. Taher, "Electrical and Optical Properties of Flexible Transparent Silver Nanowires electrodes," Int. J. Thin Film Sci. Technol., vol. 11, no. 1, hal. 123–132, 2022.
DOI: 10.18576/ijtfst/110116
Google Scholar
[10]
J. J. Jin et al., "Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials," J. Power Sources, vol. 482, no. September 2020, hal. 228953, 2021.
DOI: 10.1016/j.jpowsour.2020.228953
Google Scholar
[11]
L. O. M. Cuasay, F. L. M. Salazar, dan M. D. L. Balela, "Flexible tactile sensors based on silver nanowires: material synthesis, microstructuring, assembly, performance, and applications," Emergent Mater., vol. 5, no. 1, hal. 51–76, 2022.
DOI: 10.1007/s42247-022-00371-1
Google Scholar
[12]
L. Zhang et al., "Recent progress for silver nanowires conducting film for flexible electronics," J. Nanostructure Chem., vol. 11, no. 3, hal.323–341, 2021.
DOI: 10.1007/s40097-021-00436-3
Google Scholar
[13]
Y. Cheng et al., "Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion," Compos. Sci. Technol., vol. 215, no. September, hal. 109023, 2021.
DOI: 10.1016/j.compscitech.2021.109023
Google Scholar
[14]
M. Y. Liu et al., "Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial," Nano Energy, vol. 87, no. May, hal. 106181, 2021.
DOI: 10.1016/j.nanoen.2021.106181
Google Scholar
[15]
N. P. Kovalec et al., "Agglomeration of Ensembles of Silver Nanowires, Obtained by the Method of Template Synthesis," Bull. Russ. Acad. Sci. Phys., vol. 85, no. 8, hal. 854–857, 2021.
DOI: 10.3103/S1062873821080116
Google Scholar
[16]
J. Liu, Y. Fu, A. Guo, C. Wang, R. Huang, dan X. Zhang, "Fabrication of silver nanowires in situ in Si chip based on a novel electrochemical method," 2008 2nd IEEE Int. Nanoelectron. Conf. INEC 2008, hal. 424–427, 2008.
DOI: 10.1109/INEC.2008.4585520
Google Scholar
[17]
X. T. Pan et al., "Free-Standing Single Ag Nanowires for Multifunctional Optical Probes," ACS Appl. Mater. Interfaces, vol. 13, no. 16, hal. 19023–19030, 2021.
DOI: 10.1021/acsami.1c02332
Google Scholar
[18]
A. Kumar, M. O. Shaikh, dan C. H. Chuang, "Silver nanowire synthesis and strategies for fabricating transparent conducting electrodes," Nanomaterials, vol. 11, no. 3, hal. 1–51, 2021.
DOI: 10.3390/nano11030693
Google Scholar
[19]
R. Karimi-Chaleshtori, A. H. Nassajpour-Esfahani, M. R. Saeri, P. Rezai, dan A. Doostmohammadi, "Silver nanowire-embedded PDMS with high electrical conductivity: nanowires synthesis, composite processing and electrical analysis," Mater. Today Chem., vol. 21, hal. 100496, 2021.
DOI: 10.1016/j.mtchem.2021.100496
Google Scholar
[20]
M. Ćwik et al., "Controlling plasmon propagation and enhancement via reducing agent in wet chemistry synthesized silver nanowires," Opt. Express, vol. 29, no. 6, hal. 8834, 2021.
DOI: 10.1364/oe.412903
Google Scholar
[21]
R. Yang, C. Sui, J. Gong, dan L. Qu, "Silver nanowires prepared by modified AAO template method," Mater. Lett., vol. 61, no. 3, hal. 900–903, 2007.
DOI: 10.1016/j.matlet.2006.06.009
Google Scholar
[22]
K. K. R, L. Neelakantan, dan P. Swaminathan, "Template-assisted growth of silver nanowires by electrodeposition," hal. 1–11, 2021, [Daring]. Tersedia pada: http://arxiv.org/abs/2201.04947.
Google Scholar
[23]
S. H. Park, H. S. Shin, Y. H. Kim, H. M. Park, dan J. Y. Song, "Template-free and Filamentary Growth of Silver Nanowires: Application to Anisotropic Conductive Transparent Flexible Electrodes," Nanoscale, vol. 5, 2013.
DOI: 10.1039/c2nr33056c
Google Scholar
[24]
K. K. Caswell, C. M. Bender, dan C. J. Murphy, "Seedless, surfactantless wet chemical synthesis of silver nanowires," Nano Lett., vol. 3, no. 5, hal. 667–669, 2003.
DOI: 10.1021/nl0341178
Google Scholar
[25]
D. Zhang, L. Qi, J. Yang, J. Ma, H. Cheng, dan L. Huang, "Wet Chemical Synthesis of Silver Nanowire Thin Films at Ambient Temperature," Chem. Mater., vol. 16, no. 5, hal. 872–876, 2004.
DOI: 10.1021/cm0350737
Google Scholar
[26]
N. T. Nguyen dan J. H. Liu, "Wet chemical synthesis of silver nanowires based on a soft template of cholesteryl pyridine carbamate organogel," Sci. Adv. Mater., vol. 7, no. 7, hal. 1282–1290, 2015.
DOI: 10.1166/sam.2015.2042
Google Scholar
[27]
J. Junaidi, M. W. Saputra, R. Marjunus, S. Sembiring, dan S. Hadi, "The quenching and sonication effect on the mechanical strength of silver nanowires synthesized using the polyol method," Molecules, vol. 26, no. 8, 2021.
DOI: 10.3390/molecules26082167
Google Scholar
[28]
Y. Li, Y. Li, Z. Fan, H. Yang, X. Yuan, dan C. Wang, "Morphology-controlled silver nanowire synthesis using a cocamidopropyl betaine-based polyol process for flexible and stretchable electronics," RSC Adv., vol. 10, no. 36, hal. 21369–21374, 2020.
DOI: 10.1039/d0ra03140b
Google Scholar
[29]
L. Cao et al., "Rapid and facile synthesis of high-performance silver nanowires by a halide-mediated, modified polyol method for transparent conductive films," Nanomaterials, vol. 10, no. 6, 2020.
DOI: 10.3390/nano10061139
Google Scholar
[30]
Nasikhudin, Y. Al Fath, H. Rahmadani, M. Diantoro, H. Pujiarti, dan S. A. Aziz, "Propylene Glycol and Glycerol Addition in Forming Silver Nanowires (AgNWs) for Flexible and Conductive Electrode," E3S Web Conf., vol. 400, hal. 4–8, 2023.
DOI: 10.1051/e3sconf/202340001020
Google Scholar
[31]
Y. Guo, Y. Hu, X. Luo, S. Lin, J. Hu, dan Y. Liu, "Investigation into the role of poly(vinylpyrrolidone) in the growth of high aspect ratio silver nanowires," Inorg. Chem. Commun., vol. 128, no. December 2020, hal. 108558, 2021.
DOI: 10.1016/j.inoche.2021.108558
Google Scholar
[32]
Y. Yang, B. Xu, dan J. Hou, "Solution-Processed Silver Nanowire as Flexible Transparent Electrodes in Organic Solar Cells," Chinese J. Chem., vol. 39, no. 8, hal. 2315–2329, 2021.
DOI: 10.1002/cjoc.202000696
Google Scholar
[33]
M. Khademalrasool dan M. D. Talebzadeh, "Rapid synthesis of silver nanowires during the polyol-microwave method and COMSOL multiphysics simulation of electromagnetic heating," Adv. Powder Technol., vol. 32, no. 8, hal. 2916–2928, 2021.
DOI: 10.1016/j.apt.2021.06.009
Google Scholar
[34]
H. mei Zhang, Y. Zhang, J. wen Zhang, X. Ye, Y. yuan Li, dan P. Wang, "Characteristic of silver nanowires prepared by polyol method based on orthogonal experimental design," Bull. Mater. Sci., vol. 44, no. 2, 2021.
DOI: 10.1007/s12034-021-02395-5
Google Scholar
[35]
C. Salvo-Comino, F. Martin-Pedrosa, C. Garcia-Cabezon, dan M. L. Rodriguez-Mendez, "Silver nanowires as electron transfer mediators in electrochemical catechol biosensors," Sensors (Switzerland), vol. 21, no. 3, hal. 1–13, 2021.
DOI: 10.3390/s21030899
Google Scholar
[36]
L. Chen, L. Si, F. Wu, S. Y. Chan, P. Yu, dan B. Fei, "Electrical and mechanical self-healing membrane using gold nanoparticles as localized 'nano-heaters,'" J. Mater. Chem. C, vol. 4, no. 42, hal. 10018–10025, 2016.
DOI: 10.1039/c6tc03699f
Google Scholar
[37]
L. Yang, X. Lu, Z. Wang, dan H. Xia, "Diels-Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function," Polym. Chem., vol. 9, no. 16, hal. 2166–2172, 2018.
DOI: 10.1039/c8py00162f
Google Scholar
[38]
S. P. Mahulikar, H. R. Sonawane, dan G. Arvind Rao, "Infrared signature studies of aerospace vehicles," Prog. Aerosp. Sci., vol. 43, no. 7–8, hal. 218–245, 2007.
DOI: 10.1016/j.paerosci.2007.06.002
Google Scholar
[39]
M. C. Larciprete et al., "Infrared properties of randomly oriented silver nanowires," J. Appl. Phys., vol. 112, no. 8, 2012.
DOI: 10.1063/1.4759374
Google Scholar
[40]
Y. Wang et al., "Silver nanowires for anti-counterfeiting," J. Mater., vol. 6, no. 1, hal. 152–157, 2020.
DOI: 10.1016/j.jmat.2020.01.008
Google Scholar
[41]
Y. Wang et al., "Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation," Membranes (Basel)., vol. 12, no. 4, hal. 1–21, 2022.
DOI: 10.3390/membranes12040405
Google Scholar
[42]
W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, dan V. M. Shalaev, "Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer," Opt. Express, vol. 18, no. 5, hal. 5124, 2010.
DOI: 10.1364/oe.18.005124
Google Scholar
[43]
M. Lagrange, D. P. Langley, G. Giusti, C. Jiménez, Y. Bréchet, dan D. Bellet, "Optimization of silver nanowire-based transparent electrodes: Effects of density, size and thermal annealing," Nanoscale, vol. 7, no. 41, hal. 17410–17423, 2015.
DOI: 10.1039/c5nr04084a
Google Scholar
[44]
M. Bobinger, D. Angeli, S. Colasanti, P. La Torraca, L. Larcher, dan P. Lugli, "Infrared, transient thermal, and electrical properties of silver nanowire thin films for transparent heaters and energy-efficient coatings," Phys. Status Solidi Appl. Mater. Sci., vol. 214, no. 1, hal. 1–11, 2017.
DOI: 10.1002/pssa.201600466
Google Scholar
[45]
M. Becucci et al., "Silver nanowires as infrared-active materials for surface-enhanced Raman scattering," Nanoscale, vol. 10, no. 19, hal. 9329–9337, 2018.
DOI: 10.1039/c8nr00537k
Google Scholar
[46]
J. Wang et al., "The effect of ultraviolet radiation on silver nanowire transparent electrode based on flexible polymeric film substrate," IEEE-NANO 2015 - 15th Int. Conf. Nanotechnol., hal. 526–529, 2015.
DOI: 10.1109/NANO.2015.7388656
Google Scholar
[47]
S.-L. Lin, Chiao-chi; Lin, Dong-Xuan; Lin, "Ultraviolet Exposure Caused Degradation Problem in Silver Nanowire Transparent Electrode," Nanotechnology, no. 2, hal. 1–34, 2020, [Daring]. Tersedia pada:.
DOI: 10.1088/1361-6528/ab724f
Google Scholar
[48]
E. C. Garnett et al., "Self-limited plasmonic welding of silver nanowire junctions," Nat. Mater., vol. 11, no. 3, hal. 241–249, 2012.
DOI: 10.1038/nmat3238
Google Scholar
[49]
A. B. V. Kiran Kumar, C. Wan Bae, L. Piao, dan S. H. Kim, "Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze," Mater. Res. Bull., vol. 48, no. 8, hal. 2944–2949, 2013.
DOI: 10.1016/j.materresbull.2013.04.035
Google Scholar
[50]
W. H. Chung, S. H. Kim, dan H. S. Kim, "Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes," Sci. Rep., vol. 6, no. February, hal. 1–11, 2016.
DOI: 10.1038/srep32086
Google Scholar
[51]
N. Dahal, S. García, J. Zhou, dan S. M. Humphrey, "Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis," ACS Nano, vol. 6, no. 11, hal. 9433–9446, 2012.
DOI: 10.1021/nn3038918
Google Scholar
[52]
M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, dan C. O. Kappe, "Microwave-assisted synthesis of colloidal inorganic nanocrystals," Angew. Chemie - Int. Ed., vol. 50, no. 48, hal. 11312–11359, 2011.
DOI: 10.1002/anie.201101274
Google Scholar
[53]
Y. Yang, Y. Hu, X. Xiong, dan Y. Qin, "Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method," RSC Adv., vol. 3, no. 22, hal. 8431–8436, 2013.
DOI: 10.1039/c3ra00117b
Google Scholar
[54]
M. Zhang et al., "Study of microwave-induced ag nanowire welding for soft electrode conductivity enhancement," Micromachines, vol. 12, no. 6, 2021.
DOI: 10.3390/mi12060618
Google Scholar
[55]
P. H. Jung, Y. D. Kim, Y. H. Sung, dan H. Lee, "Microwave welding of silver nanowires for highly transparent conductive electrodes," Phys. Status Solidi Appl. Mater. Sci., vol. 214, no. 8, 2017.
DOI: 10.1002/pssa.201600908
Google Scholar
[56]
Z. Duan dan X. Pei, "Effect of Quenching Processes on Microstructure and Mechanical Properties of a High Strength Steel," IOP Conf. Ser. Mater. Sci. Eng., vol. 562, no. 1, 2019.
DOI: 10.1088/1757-899X/562/1/012006
Google Scholar
[57]
G. K. Bansal et al., "Influence of quenching strategy on phase transformation and mechanical properties of low alloy steel," Mater. Sci. Eng. A, vol. 826, no. June, hal. 141937, 2021.
DOI: 10.1016/j.msea.2021.141937
Google Scholar
[58]
Y. H. Jo et al., "FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V 10 Cr 10 Fe 45 Co x Ni 35−x medium-entropy alloys," Sci. Rep., vol. 9, no. 1, hal. 1–14, 2019.
DOI: 10.1038/s41598-019-39570-y
Google Scholar
[59]
A. B. Belonoshko et al., "Quenching of bcc-Fe from high to room temperature at high-pressure conditions: A molecular dynamics simulation," New J. Phys., vol. 11, 2009.
DOI: 10.1088/1367-2630/11/9/093039
Google Scholar