Performance Optimization of Supercapbattery with Porous Modification on Silicon as Anode and Cathode Based on Al2O3/CuCrO2

Article Preview

Abstract:

The development of the supercapbattery has become the focus of energy storage research due to their potential to increase energy and power density. This research is focused on developing a modification of silicon (Si) porous as an anode with Al2O3/CuCrO2/AC composite as a cathode of supercapacitor. These electrodes were synthesized using LA133 binder with deionized water as solvent. The supercapacitor electrode uses an aluminum foil substrate, while the Si electrode uses a cupper foil substrate. The structural and morphological characterization of the electrodes were identified through XRD, FTIR, and SEM tests, while the electrochemical performance characterization using Galvanostatic Charge-Discharge (GCD) instruments. The results of XRD data analysis of thin film electrodes of supercapacitor showed diffraction peaks which indicated the phases Al2O3/CuCrO2/AC and Si porous. The absorption functional groups of Al2O3/CuCrO2/AC and Si porous were identified through FTIR characterization. The results of SEM showed the addition of CuCrO2 and structure modification of silicon into porous caused increasing value of porosity. The electrochemical performance of the optimum point at Al2O3/CuCrO2/AC condition, showing a specific capacitance of 50.3 F/g, an energy density of 36.499 Wh/kg, and a power density of 433.6 W/kg. The combination of Al2O3/CuCrO2/AC//Si Porous 16 for supercapbattery devices shows performance with a specific capacitance of 14.4 F/g, an energy density of 6.1 Wh/kg, and a power density of 33.6 W/kg. These results indicate an increase in electrochemical performance compared with Si anodes without modification.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1118)

Pages:

37-46

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Balasubramaniam, A. Mohanty, S. K. Balasingam, S. J. Kim, and A. Ramadoss, Nano-Micro Lett. 2 (2020).

Google Scholar

[2] G. Muungani, M. N. Pillay, and W. E. van Zyl, RSC Adv. 13 (2023) 26732–26743.

DOI: 10.1039/d3ra03629d

Google Scholar

[3] Y. Wang et al., J. Mater. Sci. 56 (2021) 173–200.

Google Scholar

[4] S. Najib and E. Erdem, Nanoscale Adv. 1 (2019) 2817–2827.

Google Scholar

[5] A. Das, B. Raj, M. Mohapatra, S. M. Andersen, and S. Basu, WIREs Energy Environ. 11(2022).

Google Scholar

[6] H. J. Sim et al., Nano Energy 47 (2018) 385–392.

Google Scholar

[7] S. Jadhav et al., Electrochimica Acta 299 (2019) 34–44.

Google Scholar

[8] J. Cherusseri, N. Choudhary, K. Sambath Kumar, Y. Jung, and J. Thomas, Nanoscale Horiz. 4 (2019) 840–858.

DOI: 10.1039/c9nh00152b

Google Scholar

[9] D. Lemian and F. Bode, Energies 15 (2022)

Google Scholar

[10] M. Imran et al., Mater. Sci. Semicond. Process. 158 (2023).

Google Scholar

[11] K. Wang et al., ACS Appl. Mater. Interfaces 13 (2021) 15315–15323.

Google Scholar

[12] H. Chen et al., Electrochimica Acta 312 (2019) 242–250.

Google Scholar

[13] M. Gao, W.-K. Wang, Q. Rong, J. Jiang, Y.-J. Zhang, and H.-Q. Yu, ACS Appl. Mater. Interfaces 10 (2018) 23163–23173.

Google Scholar

[14] A. M. Zardkhoshoui and S. S. H. Davarani, J. Alloys Compd. 769 (2018) 922–931.

Google Scholar

[15] M. Liu, K. Turcheniuk, W. Fu, Y. Yang, M. Liu, and G. Yushin, Nano Energy 71 (2020).

Google Scholar

[16] S. Di, L. Gong, and B. Zhou, Mater. Chem. Phys. 253 (2020).

Google Scholar

[17] H.-J. Wu et al., Nanomaterials 9 (2019).

Google Scholar

[18] S. Sakthinathan et al., RSC Adv. 11 (2021) 15856–15870.

Google Scholar

[19] R. Manickam, J. Yesuraj, and K. Biswas, Mater. Sci. Semicond. Process. 109 (2020).

Google Scholar

[20] R. Wang, D. Feng, T. Chen, S. Chen, and Y. Liu, J. Alloys Compd. 825 (2020).

Google Scholar

[21] J. He, C. Das, F. Yang, and J. Maibach, Electrochimica Acta 411 (2022).

Google Scholar

[22] W.-F. Ren, Y. Zhou, J.-T. Li, L. Huang, and S.-G. Sun, Curr. Opin. Electrochem. 18 (2019) 46–54.

Google Scholar

[23] P. Li, J.-Y. Hwang, and Y.-K. Sun, ACS Nano (2019).

Google Scholar

[24] H. Su, X. Li, C. Liu, Y. Shang, and H. Liu, Chem. Eng. J. 451 (2023).

Google Scholar

[25] P. V. Seredin, H. Leiste, A. S. Lenshin, and A. M. Mizerov, Appl. Surf. Sci. 508 (2020).

Google Scholar

[26] A. Ahmad et al., Arab. J. Chem. 13 (2020) 8717–8722.

Google Scholar

[27] Q. Wei, Z. Chen, Y. Cheng, X. Wang, X. Yang, and Z. Wang, Colloids Surf. Physicochem. Eng. Asp. 574 (2019) 221–227.

Google Scholar

[28] A. Zhu, H. Xing, Q. Fan, X. Ji, and P. Yang, Synth. Met. 271 (2021).

Google Scholar

[29] J. J. Ji, F. T. Lin, X. Y. He, and H. Shi, Mater. Sci. Forum 971 (2019) 91–100.

Google Scholar

[30] Y. Yang et al., Chem. Eng. J. 406 (2021).

Google Scholar

[31] A. Daulay, Andriayani, Marpongahtun, and S. Gea, South Afr. J. Chem. Eng. 42 (2022) 32–41.

Google Scholar

[32] W. Yang, H. Ying, S. Zhang, R. Guo, J. Wang, and W.-Q. Han, Electrochimica Acta 337 (2020).

Google Scholar

[33] A. Allwar and M. K. Sari, presented at the 2ND INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE), Yogyakarta, Indonesia (2018).

Google Scholar

[34] Allwar, M. K. Sari, F. Rahmawati, and A. N. Amatullah, Key Eng. Mater. 801 (2019) 298–303.

Google Scholar

[35] A. Allwar and I. Setianingrum, presented at the PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials, Tangerang Selatan, Indonesia (2020).

DOI: 10.1063/5.0002795

Google Scholar

[36] A.A. Shah, A. Parveen, P. A. Alvi, and A. Azam, Ceram. Int. 46 (2020) 19827–19834.

Google Scholar

[37] N. Barot, P.K. Mehta, A. Rao, R. Thomas, and Y.-K. Kuo, J. Alloys Compd. 791(2019)134-143.

Google Scholar

[38] D. V. Hoang et al., J. Phys. Conf. Ser. 2013 (2021).

Google Scholar

[39] R.-D. Zhao, Y.-M. Zhang, Q.-L. Liu, and Z.-Y. Zhao, Inorg. Chem. 59 (2020) 16679–16689.

Google Scholar

[40] S. Rai, R. Bhujel, J. Biswas, U. Deka, and B. P. Swain, Mater. Today Proc. 39 (2021) 1848–1851.

Google Scholar

[41] M. R. Jimenéz-Vivanco et al., Sci. Rep. 10 (2020).

Google Scholar

[42] K. W. Mas'udah, P.E. Yuwita, Y.A. Haryanto, A. Taufiq, and Sunaryono, presented at the INTERNATIONAL CONFERENCE ON ELECTROMAGNETISM, ROCK MAGNETISM AND MAGNETIC MATERIAL (ICE-R3M) 2019, Malang, Indonesia (2020).

DOI: 10.1063/5.0015777

Google Scholar

[43] W. Sun, Y. Zhang, and F. Yang, Energy Technol. 9 (2021).

Google Scholar

[44] G. Yang and S.-J. Park, J. Alloys Compd. 835 (2020).

Google Scholar

[45] G. Nagaraju, S. C. Sekhar, B. Ramulu, Sk. K. Hussain, D. Narsimulu, and J. S. Yu, Nano-Micro Lett. 13 (2021).

Google Scholar