Preparation of Polycurcumin-Modified Graphite Electrode via Electropolymerization and its Application for Determining Cd2+

Article Preview

Abstract:

The graphite electrode was changed by applying cyclic voltammetry to electropolymerized curcumin. Then, the polycurcumin-modified graphite electrodes (GECU) were used to determine Cd2+ concentration. The results showed that the GECU electrodes had higher electrocatalytic activity toward Cd2+ than bare graphite electrodes. Furthermore, the effect of the scan rates showed that the electrochemical process controlling the redox behavior of Cd2+ on GECU is a diffusion-controlled electrochemical process. At Cd2+ ranging from 0.22 to 11.03 ppm, the relationship between oxidation peak current (Ip) and Cd2+ concentration follows the linear regression equation of Ip = 73.024[Cd2+] + 722.02 (μA, R2 = 0.9936). It means that under experimental conditions, an increase in Cd2+ from 0.22 to 11.03 ppm can increase the Ip value. On the other hand, At Cd2+ ranging from 11.03 to 55.07 ppm, the relationship between Ip and Cd2+ concentration follows the linear equation of Ip = 24.227[Cd2+] + 1212.6 (μA, R2 = 0.9920). The LOD and LOQ were determined at low Cd2+ concentrations, namely 0.86 ppm, and 2.84 ppm, respectively. Furthermore, the suggested modification has been used successfully and with satisfactory recoveries to determine the presence of Cd2+ in laboratory liquid wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1118)

Pages:

29-36

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.Y. Khorasani, H. Langari, S. B.T. Sany, M. Rezayi, and A. Sahebkar, The role of curcumin and its derivatives in sensory applications, Mater. Sci. Eng. C 103, May 109792, pp.1-10, (2019).

DOI: 10.1016/j.msec.2019.109792

Google Scholar

[2] T. Devasena, N. Balasubramanian, N. Muninathan, K. Baskaran, and S. T. John, Curcumin Is an Iconic Ligand for Detecting Environmental Pollutants, Bioinorg. Chem. Appl. 2022, pp.1-12, (2022).

DOI: 10.1155/2022/9248988

Google Scholar

[3] N. T. D. Dey and V. R. Shanker, Validation of copper decorated Graphene oxide material for assaying Curcumin, Front. Nanosci. Nanotechnol. 7, 1, p.1–11, (2021)

DOI: 10.15761/fnn.1000194

Google Scholar

[4] Y. Pu, Y. Wu, Z. Yu, L. Lu, and X. Wang, 2021 Simultaneous determination of Cd2+ and Pb2+ by an electrochemical sensor based on Fe3O4/Bi2O3/C3N4 nanocomposites, Talanta Open 3, November 2020, p.0–6, (2021).

DOI: 10.1016/j.talo.2020.100024

Google Scholar

[5] R. Golbedaghi, S. Jafari, and M. Reza,Determination of cadmium ( II ) ion by atomic absorption spectrometry after cloud point extraction, J. Iran. Chem., 9, p.251–256, (2012).

DOI: 10.1007/s13738-011-0018-7

Google Scholar

[6] Z. Li and L. Zhou, Atomic Fluorescence Spectrometry after Ultrasound-Assisted Sample Preparation, J. Braz. Chem. Soc., 19, 7, p.1347–1354, (2008).

DOI: 10.1590/s0103-50532008000700017

Google Scholar

[7] J. E.O. Sullivan, R. J. Watson, and E. C. V. Butler, Talanta An ICP-MS procedure to determine Cd , Co , Cu , Ni , Pb and Zn in oceanic waters using in-line fl ow-injection with solid-phase extraction for preconcentration, Talanta, 115, p.999–1010, (2013).

DOI: 10.1016/j.talanta.2013.06.054

Google Scholar

[8] C. Ariño, N. Serrano, J. M. Díaz-cruz, and M. Esteban M, Voltammetric determination of metals beyond mercury electrodes: A Review, Anal. Chim. Acta, 990, Octobe 2017, p.11–53, (2017).

DOI: 10.1016/j.aca.2017.07.069

Google Scholar

[9] L.A. Machhindra and Y. K. Yen, A Highly Sensitive Electrochemical Sensor for Cd2+ Detection Based on Prussian Blue-PEDOT-Loaded Laser-Scribed Graphene-Modified Glassy Carbon Electrode, Chemosensors, 10, 6, pp.1-13, (2022).

DOI: 10.3390/chemosensors10060209

Google Scholar

[10] B. Mulyati and R. S. Panjaitan, Development of Differential Pulse Anodic Stripping Voltammetry Technique for cadmium(II) Detection and Its Application in Water Spinach, Indones. J. Chem. Res., 9, 2, p.129–136, (2021).

DOI: 10.30598//ijcr.2020.9-riz

Google Scholar

[11] H. Dai, N. Wang, D. Wang, H. Ma, and M. Lin, An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II), Chem. Eng. J., 299, p.150–155, (2016).

DOI: 10.1016/j.cej.2016.04.083

Google Scholar

[12] K. Krishna Kumar, M. Devendiran, R.A. Kalaivani, and S. Narayanan, Polycurcumin nanospheres modified electrode for nanoscale detection of mercury ions in seawater, Chem. Phys. Lett., 781, May 2020, p.138974, (2021).

DOI: 10.1016/j.cplett.2021.138974

Google Scholar

[13] A. Mejri, A. Mars, H. Elfil, and A. H. Hamzaoui, Graphene nanosheets modified with curcumin-decorated manganese dioxide for ultrasensitive potentiometric sensing of mercury(II), fluoride and cyanide, Microchim. Acta, 185, 12, p.3–10, (2018).

DOI: 10.1007/s00604-018-3064-3

Google Scholar

[14] B. Devadas, M. Rajkumar, and S. M. Chen, Electropolymerization of curcumin on glassy carbon electrode and its electrocatalytic application for the voltammetric determination of epinephrine and p-acetoaminophenol, Colloids Surfaces B Biointerfaces, 116, p.674–680, (2014).

DOI: 10.1016/j.colsurfb.2013.11.002

Google Scholar

[15] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, A practical beginner's guide to cyclic voltammetry, J. Chem. Educ., 95, 2, p.197–206, (2018).

DOI: 10.1021/acs.jchemed.7b00361

Google Scholar

[16] S. Marwati, D. Siswanta, W. Trisunaryanti and I. S. Y. Louise, 2020 Polyeugenol-modified graphite electrode for determination of hydroquinone in cosmetic, J. Phys. Conf. Ser. 1485, 1, p.0–7, (2020).

DOI: 10.1088/1742-6596/1485/1/012034

Google Scholar

[17] A. Gubendran, M. Amutha, P. Dhanasekaran, A. Imayatharasi, and M. Vijayalakshmi, Synthesis, characterization and pharmaceutical applications of Curcumin metal complex, J. Pharm. Biol. Sci., 11, 6, p.80–84, (2016).

Google Scholar