[1]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303. https://doi.org/.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A. 375–377 (2004) 213–218. https://doi.org/.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[3]
E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nat. Rev. Mater. 4 (2019) 515–534.
DOI: 10.1038/s41578-019-0121-4
Google Scholar
[4]
O.N. Senkov, J.M. Scott, S. V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509 (2011) 6043–6048.
DOI: 10.1016/j.jallcom.2011.02.171
Google Scholar
[5]
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo 1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308–6317.
DOI: 10.1016/j.actamat.2011.06.041
Google Scholar
[6]
M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk, J. Qiao, Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments, J. Mater. Res. 33 (2018) 3310–3320.
DOI: 10.1557/jmr.2018.279
Google Scholar
[7]
P.Y. Chen, C. Lee, S.Y. Wang, M. Seifi, J.J. Lewandowski, K.A. Dahmen, H.L. Jia, X. Xie, B.L. Chen, J.W. Yeh, C.W. Tsai, T. Yuan, P.K. Liaw, Fatigue behavior of high-entropy alloys: A review, Sci. China Technol. Sci. 61(2018)168-178.
DOI: 10.1007/s11431-017-9137-4
Google Scholar
[8]
W. Li, S. Chen, P.K. Liaw, Discovery and design of fatigue-resistant high-entropy alloys, Scr. Mater. 187 (2020) 68–75.
DOI: 10.1016/j.scriptamat.2020.05.047
Google Scholar
[9]
R. Feng, K. An, P.K. Liaw, Fatigue Behavior and Mechanisms of High-Entropy Alloys, High Entropy Alloy. Mater. (2022).
DOI: 10.1007/s44210-022-00008-2
Google Scholar
[10]
S. Chen, X. Fan, B. Steingrimsson, Q. Xiong, W. Li, P.K. Liaw, Fatigue dataset of high-entropy alloys, Sci. Data. 9 (2022) 3–10.
DOI: 10.1038/s41597-022-01368-5
Google Scholar
[11]
W. Li, G. Wang, S. Wu, P.K. Liaw, Creep, fatigue, and fracture behavior of high-entropy alloys, J. Mater. Res. 33 (2018) 3011–3034.
DOI: 10.1557/jmr.2018.191
Google Scholar
[12]
M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, eds., High-Entropy Alloys, Springer International Publishing, Cham, 2016.
DOI: 10.1007/978-3-319-27013-5
Google Scholar
[13]
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range, Acta Mater. 124 (2017) 143–150.
DOI: 10.1016/j.actamat.2016.11.016
Google Scholar
[14]
Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, B. Li, Design of non-equiatomic medium-entropy alloys, Sci. Rep. 8 (2018) 1–9.
DOI: 10.1038/s41598-018-19449-0
Google Scholar
[15]
U. Hecht, S. Guo, M.L. Weaver, Editorial: Dual-Phase Materials in the Medium and High Entropy Alloy Systems Al-Cr-Fe-Ni and Al-Co-Cr-Fe-Ni, Front. Mater. 8 (2021) 8–10.
DOI: 10.3389/fmats.2021.718788
Google Scholar
[16]
Y. Dong, X. Gao, Y. Lu, T. Wang, T. Li, A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties, Mater. Lett. 169 (2016) 62–64.
DOI: 10.1016/j.matlet.2016.01.096
Google Scholar
[17]
S. Gein, V.T. Witusiewicz, U. Hecht, The Influence of Mo Additions on the Microstructure and Mechanical Properties of AlCrFe2Ni2 Medium Entropy Alloys, Front. Mater. 7 (2020).
DOI: 10.3389/fmats.2020.00296
Google Scholar
[18]
G.B. Olson, R. Chait, M. Azrin, R.A. Gagne, Fatigue Strength of Trip Steels, Watertown, MA, 1979. https://apps.dtic.mil/sti/citations/ADA078592.
Google Scholar
[19]
K. Liu, S.S. Nene, M. Frank, S. Sinha, R.S. Mishra, Metastability-assisted fatigue behavior in a friction stir processed dual-phase high entropy alloy, Mater. Res. Lett. 6 (2018) 613–619.
DOI: 10.1080/21663831.2018.1523240
Google Scholar
[20]
K. Liu, S.S. Nene, M. Frank, S. Sinha, R.S. Mishra, Extremely high fatigue resistance in an ultrafine grained high entropy alloy, Appl. Mater. Today. 15 (2019) 525–530. https://doi.org/.
DOI: 10.1016/j.apmt.2019.04.001
Google Scholar
[21]
S. Shukla, T. Wang, S. Cotton, R.S. Mishra, Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy, Scr. Mater. 156 (2018) 105–109.
DOI: 10.1016/j.scriptamat.2018.07.022
Google Scholar
[22]
K. Liu, M. Komarasamy, B. Gwalani, S. Shukla, R.S. Mishra, Fatigue behavior of ultrafine grained triplex Al0.3CoCrFeNi high entropy alloy, Scr. Mater. 158 (2019) 116–120.
DOI: 10.1016/j.scriptamat.2018.08.048
Google Scholar
[23]
R. Feng, Y. Rao, C. Liu, X. Xie, D. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H. Wang, K. An, P.K. Liaw, Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nat. Commun. 12(2021) 1-10.
DOI: 10.1038/s41467-021-23689-6
Google Scholar
[24]
M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater. 60 (2012) 5723–5734.
DOI: 10.1016/j.actamat.2012.06.046
Google Scholar
[25]
K.V.S. Thurston, B. Gludovatz, A. Hohenwarter, G. Laplanche, E.P. George, R.O. Ritchie, Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi, Intermetallics 88 (2017) 65–72.
DOI: 10.1016/j.intermet.2017.05.009
Google Scholar
[26]
J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys, Proc. Natl. Acad. Sci. 115 (2018) 8919–8924.
DOI: 10.1073/pnas.1808660115
Google Scholar
[27]
X. Wang, W. Bai, Z. Zhang, Z. Wang, X. Ren, Enhanced fatigue resistance of a face-centered-cubic single-phase Al0.3CoCrFeNi high-entropy alloy through planar deformation characteristic, Mater. Sci. Eng. A. 862 (2023) 144499. https://doi.org/https://doi.org/10.1016/j.msea.2022. 144499.
DOI: 10.1016/j.msea.2022.144499
Google Scholar
[28]
W. Li, X. Long, S. Huang, Q. Fang, C. Jiang, Elevated fatigue crack growth resistance of Mo alloyed CoCrFeNi high entropy alloys, Eng. Fract. Mech. 218 (2019) 106579.
DOI: 10.1016/j.engfracmech.2019.106579
Google Scholar
[29]
J.-P.Zou, X.-M. Luo, B. Zhang, Y.-W. Luo, H.-L. Chen, F. Liang, G.-P. Zhang, Enhancing bending fatigue resistance of the CoCrFeMnNi high-entropy alloy thin foils by Al addition, Mater. Sci. Eng. A. 831 (2022) 142281. https://doi.org/https://doi.org/10.1016/j.msea. 2021.142281.
DOI: 10.1016/j.msea.2021.142281
Google Scholar
[30]
D. Taylor, The theory of critical distances: A history and a new definition, Struct. Durab. Heal. Monit. SDHM. 2 (2006) 1–10.
Google Scholar
[31]
H. Neuber, Kerbspannungslehre, Springer-Verlag, Berlin, Heidelberg, 1958.
DOI: 10.1007/978-3-642-53069-2
Google Scholar
[32]
R.E. Peterson, Notch Sensitivity, in: G. Sines, J.L. Waisman (Eds.), Metal Fatigue, McGraw Hill, New York, 1959: p.293–306.
Google Scholar
[33]
P. Lukáš, M. Klesnil, Fatigue limit of notched bodies, Mater. Sci. Eng. 34 (1978) 61–66. https://doi.org/.
DOI: 10.1016/0025-5416(78)90009-5
Google Scholar
[34]
M.H. El Haddad, T.H. Topper, K.N. Smith, Prediction of non-propagating cracks, Eng. Fract. Mech. 11 (1979) 573–584.
DOI: 10.1016/0013-7944(79)90081-X
Google Scholar
[35]
R.A. Smith, K.J. Miller, Prediction of fatigue regimes in notched components, Int. J. Mech. Sci. 20 (1978) 201–206.
DOI: 10.1016/0020-7403(78)90082-6
Google Scholar
[36]
M.M.I. Hammouda, R.A. Smith, K.J. Miller, Elastic‐Plastic Fracture Mechanics for Initiation and Propagation of Notch Fatigue Cracks, Fatigue Fract. Eng. Mater. Struct. 2 (1979) 139–154.
DOI: 10.1111/j.1460-2695.1979.tb01350.x
Google Scholar
[37]
B. Atzori, P. Lazzarin, Notch Sensitivity and Defect Sensitivity under Fatigue Loading: Two Sides of the Same Medal, Int. J. Fract. 107 (2001) 1–8.
DOI: 10.1023/A:1007686727207
Google Scholar
[38]
G. Nicoletto, A novel test method for the fatigue characterization of metal powder bed fused alloys, Procedia Struct. Integr. 7 (2017) 67–74.
DOI: 10.1016/j.prostr.2017.11.062
Google Scholar
[39]
P. Lorenzino, A. Navarro, Grain size effects on notch sensitivity, Int. J. Fatigue, 70 (2015) 205-215. ISSN 0142-1123.
DOI: 10.1016/j.ijfatigue.2014.09.012
Google Scholar
[40]
Z. Tang, T. Yuan, C.W. Tsai, J.W. Yeh, C.D. Lundin, P.K. Liaw, Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Mater. 99 (2015) 247–258.
DOI: 10.1016/j.actamat.2015.07.004
Google Scholar
[41]
K. Liu, B. Gwalani, M. Komarasamy, S. Shukla, T. Wang, R.S. Mishra, Effect of nano-sized precipitates on the fatigue property of a lamellar structured high entropy alloy, Mater. Sci. Eng. A. 760 (2019) 225–230.
DOI: 10.1016/j.msea.2019.06.012
Google Scholar
[42]
P.K. Liaw, S. Chen, K.-K. Tseng, J.-W. Yeh, T. Liu, F. Meng, Remarkable High-Cycle Fatigue Resistance of the TiZrNbHfTa High-Entropy Alloy and Associated Mechanisms, SSRN Electron. J. (2020). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3708710.
DOI: 10.2139/ssrn.3708757
Google Scholar
[43]
B. Guennec, V. Kentheswaran, L. Perrière, A. Ueno, I. Guillot, J.P. Couzinié, G. Dirras, Four-point bending fatigue behavior of an equimolar BCC HfNbTaTiZr high-entropy alloy: Macroscopic and microscopic viewpoints, Mater. 4 (2018) 348–360.
DOI: 10.1016/j.mtla.2018.09.040
Google Scholar
[44]
K. Suzuki, M. Koyama, S. Hamada, K. Tsuzaki, H. Noguchi, Planar slip-driven fatigue crack initiation and propagation in an equiatomic CrMnFeCoNi high-entropy alloy, Int. J. Fatigue. 133 (2020) 105418.
DOI: 10.1016/j.ijfatigue.2019.105418
Google Scholar
[45]
K. Suzuki, M. Koyama, H. Noguchi, Small fatigue crack growth in a high entropy alloy, Procedia Struct. Integr. 13 (2018) 1065–1070.
DOI: 10.1016/j.prostr.2018.12.224
Google Scholar
[46]
G.T. Lee, J.W. Won, K.R. Lim, M. Kang, H.J. Kwon, Y.S. Na, Y.S. Choi, Effect of Microstructural Features on the High-Cycle Fatigue Behavior of CoCrFeMnNi High-Entropy Alloys Deformed at Room and Cryogenic Temperatures, Met. Mater. Int. 27 (2021) 593–602.
DOI: 10.1007/s12540-020-00786-7
Google Scholar
[47]
U. Hecht, S. Gein, O. Stryzhyboroda, E. Eshed, S. Osovski, The BCC-FCC Phase Transformation Pathways and Crystal Orientation Relationships in Dual Phase Materials From Al-(Co)-Cr-Fe-Ni Alloys, Front. Mater. 7 (2020) 1–11.
DOI: 10.3389/fmats.2020.00287
Google Scholar
[48]
J.D. Fritz, Heat treating of austenitic and duplex stainless steels, in: J.L. Dossett, G.E. Totten, Heat Treating of Irons and Steels, ASM Handbook, ASM International, 2014.
DOI: 10.31399/asm.hb.v04d.9781627081689
Google Scholar
[49]
N. Llorca-Isern, I. López-Jiménez, H. López-Luque, M.V. Biezma, A. Roca, Study of the precipitation of secondary phases in duplex and superduplex stainless steel, Mater. Sci. Forum 879 (2017), 2537–2542.
DOI: 10.4028/www.scientific.net/msf.879.2537
Google Scholar
[50]
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, A. Cardona, Fiji: an open-source platform for biological-image analysis, Nature Methods 9(7) (2012), 676–682.
DOI: 10.1038/nmeth.2019
Google Scholar
[51]
W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3–20.
DOI: 10.1557/jmr.2004.19.1.3
Google Scholar
[52]
G.M.P. W.C. Oliver, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. 7 (1992) 1564–1583.
DOI: 10.1557/JMR.1992.1564
Google Scholar
[53]
Y. Gorash, D. Mackenzie, On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour, Open Eng. 7 (2017) 126–140.
DOI: 10.1515/eng-2017-0019
Google Scholar
[54]
S.V. Sajadifar, T. Wegener, G.G. Yapici, T. Niendorf, Effect of grain size on the very high cycle fatigue behavior and notch sensitivity of titanium, Theor. Appl. Fract. Mech. 104 (2019) 102362. https://doi.org/.
DOI: 10.1016/j.tafmec.2019.102362
Google Scholar
[55]
T.Niendorf, J. Dadda, D. Canadinc, H.J. Maier, I. Karaman, Monitoring the fatigue-induced damage evolution in ultrafine-grained interstitial-free steel utilizing digital image correlation, Mater. Sci. Eng.A. 517(2009) 225–234. https://doi.org/https://doi.org/10.1016/j.msea.2009.04. 053.
DOI: 10.1016/j.msea.2009.04.053
Google Scholar
[56]
T. Niendorf, D. Canadinc, H.J. Maier, Fatigue Damage Evolution in Ultrafine-Grained Interstitial-Free Steel, Adv. Eng. Mater. 13 (2011) 275–280. https://doi.org/.
DOI: 10.1002/adem.201000272
Google Scholar
[57]
G.M. Owolabi, R. Prasannavenkatesan, D.L. McDowell, Probabilistic framework for a microstructure-sensitive fatigue notch factor, Int. J. Fatigue. 32 (2010) 1378–1388. https://doi.org/.
DOI: 10.1016/j.ijfatigue.2010.02.003
Google Scholar
[58]
G. Owolabi, B. Egboiyi, L. Shi, H. Whitworth, Microstructure-dependent fatigue damage process zone and notch sensitivity index, Int. J. Fract. 170 (2011) 159–173.
DOI: 10.1007/s10704-011-9620-z
Google Scholar
[59]
G. Owolabi, O. Okeyoyin, A. Olasumboye, H. Whitworth, A new approach to estimating the fatigue notch factor of Ti-6Al-4V components, Int. J. Fatigue. 82 (2016) 29–34.
DOI: 10.1016/j.ijfatigue.2015.08.018
Google Scholar
[60]
J. Papuga, I. Vízková, M. Lutovinov, M. Nesládek, Mean stress effect in stress-life fatigue prediction re-evaluated, MATEC Web Conf. 165 (2018) 10018.
DOI: 10.1051/matecconf/201816510018
Google Scholar
[61]
J. Goodman, Mechanics Applied to Engineering, Longman, Green & Company, London, 1899.
Google Scholar
[62]
J. Marin, Interpretation of fatigue strengths for combined stresses, in: Proceedings of the International Conference on Fatigue of Metals, Institution of Mechanical Engineers, London, UK (1956): p.184–195.
Google Scholar
[63]
J. Schijve, Fatigue Properties, in: J. Schijve (Ed.), Fatigue of Structures and Materials, Springer Netherlands, Dordrecht, 2009: p.141–169.
DOI: 10.1007/978-1-4020-6808-9_6
Google Scholar
[64]
G. Oh, Y. Akiniwa, Mean and residual stress effects on fatigue behavior in a pre-strained corner of stainless steel sheet, Int. J. Fatigue. 145 (2021) 106125. https://doi.org/.
DOI: 10.1016/j.ijfatigue.2020.106125
Google Scholar
[65]
L. Pallarés-Santasmartas, J. Albizuri, A. Avilés, R. Avilés, Mean stress effect on the axial fatigue strength of DIN 34CrNiMo6 quenched and tempered steel, Metals 8 (2018) 1–19.
DOI: 10.3390/met8040213
Google Scholar
[66]
S. Bhat, V.G. Ukadgaonker, Theoretical methodology for life estimation of ductile notched member under constant amplitude load in high cycle fatigue: A review, Artic. J. Basic Appl. Res. Int. (2016). www.ikpress.org.
Google Scholar
[67]
A. Turnbull, E.R. De Los Rios, The effect of grain size on the fatigue of commercially pure Aluminium, Fatigue Fract. Engng. Mater. Struct. 18 (1995) 1455-1467.
DOI: 10.1111/j.1460-2695.1995.tb00868.x
Google Scholar
[68]
E.O. Hall, The deformation and aging of mild steel: III Discussion results, Proc. Phys. Soc. London, B64 (1951), 747-753.
DOI: 10.1088/0370-1301/64/9/303
Google Scholar
[69]
N.J. Petch, The cleavage strength of polycrystals, Iron Steel Inst, 174 (1953), 25-28.
Google Scholar
[70]
M. Mlikota, K. Dogahe, S. Schmauder, Ž. Božić, Influence of the grain size on the fatigue initiation life curve, Int. J. Fatigue. 158 (2022) 106562. https://doi.org/.
DOI: 10.1016/j.ijfatigue.2021.106562
Google Scholar