Fatigue Behavior of Medium Entropy Alloys AlCrFe2Ni2 and AlCrFe2Ni2Mo0.1 - A Comparison with Super Duplex Steel 1.4517

Article Preview

Abstract:

In the present study the notched fatigue behavior of two multi-phase medium entropy alloys (MEAs) AlCrFe2Ni2 and AlCrFe2Ni2Mo0.1 was characterized by three-point-bending (3-PB), along with a super-duplex steel 1.4517 as a reference material. An analytical approach for characterizing the fatigue notch factor (kf), based on grain size analysis in combination with finite element modelling (FEM) was used, relating the theory of critical distances (TCD) to the grain size of the material. To validate the approach, for the reference steel, the fatigue notch factor was also determined experimentally by comparing the fatigue behavior of notched and smooth specimens, resulting in an experimentally determined fatigue notch factor (kf) ~ 1.07. The numerically and analytically estimated notch effects increase with decreasing average grain size and vary between ~ 1.07 for the coarse-grained reference material – in very good agreement with the experimental results – and ~ 1.35 for the much more fine-grained AlCrFe2Ni2Mo0.1 medium entropy alloy. Note that these values are significantly lower than the stress concentration factor (kt) ~ 1.58, associated with the notch geometry. Fatigue endurance limits were measured at a fatigue stress ratio R ~ 0.1 (unidirectional stress), but were converted to fatigue amplitudes at R = -1 (σa, R-1, fully reversed stress), to be able to make due comparisons with available literature data, by using the elliptical relationship. The resulting fatigue endurance limit amplitudes for specimens surviving at least 2E+06 cycles for a minimum of three tested samples and including notch effects are σa, R-1 ~ 508 MPa for the AlCrFe2Ni2 alloy, σa, R-1 ~ 540 MPa for the AlCrFe2Ni2Mo0.1 alloy modification and σa, R-1 ~ 400 MPa for the reference super-duplex steel, putting the analyzed MEAs into a very competitive position compared to Cobalt containing multi-phase high or medium entropy alloys as well as commercially available steels.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1121)

Pages:

61-81

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303. https://doi.org/.

DOI: 10.1002/adem.200300567

Google Scholar

[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A. 375–377 (2004) 213–218. https://doi.org/.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[3] E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nat. Rev. Mater. 4 (2019) 515–534.

DOI: 10.1038/s41578-019-0121-4

Google Scholar

[4] O.N. Senkov, J.M. Scott, S. V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509 (2011) 6043–6048.

DOI: 10.1016/j.jallcom.2011.02.171

Google Scholar

[5] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo 1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308–6317.

DOI: 10.1016/j.actamat.2011.06.041

Google Scholar

[6] M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk, J. Qiao, Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments, J. Mater. Res. 33 (2018) 3310–3320.

DOI: 10.1557/jmr.2018.279

Google Scholar

[7] P.Y. Chen, C. Lee, S.Y. Wang, M. Seifi, J.J. Lewandowski, K.A. Dahmen, H.L. Jia, X. Xie, B.L. Chen, J.W. Yeh, C.W. Tsai, T. Yuan, P.K. Liaw, Fatigue behavior of high-entropy alloys: A review, Sci. China Technol. Sci. 61(2018)168-178.

DOI: 10.1007/s11431-017-9137-4

Google Scholar

[8] W. Li, S. Chen, P.K. Liaw, Discovery and design of fatigue-resistant high-entropy alloys, Scr. Mater. 187 (2020) 68–75.

DOI: 10.1016/j.scriptamat.2020.05.047

Google Scholar

[9] R. Feng, K. An, P.K. Liaw, Fatigue Behavior and Mechanisms of High-Entropy Alloys, High Entropy Alloy. Mater. (2022).

DOI: 10.1007/s44210-022-00008-2

Google Scholar

[10] S. Chen, X. Fan, B. Steingrimsson, Q. Xiong, W. Li, P.K. Liaw, Fatigue dataset of high-entropy alloys, Sci. Data. 9 (2022) 3–10.

DOI: 10.1038/s41597-022-01368-5

Google Scholar

[11] W. Li, G. Wang, S. Wu, P.K. Liaw, Creep, fatigue, and fracture behavior of high-entropy alloys, J. Mater. Res. 33 (2018) 3011–3034.

DOI: 10.1557/jmr.2018.191

Google Scholar

[12] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, eds., High-Entropy Alloys, Springer International Publishing, Cham, 2016.

DOI: 10.1007/978-3-319-27013-5

Google Scholar

[13] Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range, Acta Mater. 124 (2017) 143–150.

DOI: 10.1016/j.actamat.2016.11.016

Google Scholar

[14] Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, B. Li, Design of non-equiatomic medium-entropy alloys, Sci. Rep. 8 (2018) 1–9.

DOI: 10.1038/s41598-018-19449-0

Google Scholar

[15] U. Hecht, S. Guo, M.L. Weaver, Editorial: Dual-Phase Materials in the Medium and High Entropy Alloy Systems Al-Cr-Fe-Ni and Al-Co-Cr-Fe-Ni, Front. Mater. 8 (2021) 8–10.

DOI: 10.3389/fmats.2021.718788

Google Scholar

[16] Y. Dong, X. Gao, Y. Lu, T. Wang, T. Li, A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties, Mater. Lett. 169 (2016) 62–64.

DOI: 10.1016/j.matlet.2016.01.096

Google Scholar

[17] S. Gein, V.T. Witusiewicz, U. Hecht, The Influence of Mo Additions on the Microstructure and Mechanical Properties of AlCrFe2Ni2 Medium Entropy Alloys, Front. Mater. 7 (2020).

DOI: 10.3389/fmats.2020.00296

Google Scholar

[18] G.B. Olson, R. Chait, M. Azrin, R.A. Gagne, Fatigue Strength of Trip Steels, Watertown, MA, 1979. https://apps.dtic.mil/sti/citations/ADA078592.

Google Scholar

[19] K. Liu, S.S. Nene, M. Frank, S. Sinha, R.S. Mishra, Metastability-assisted fatigue behavior in a friction stir processed dual-phase high entropy alloy, Mater. Res. Lett. 6 (2018) 613–619.

DOI: 10.1080/21663831.2018.1523240

Google Scholar

[20] K. Liu, S.S. Nene, M. Frank, S. Sinha, R.S. Mishra, Extremely high fatigue resistance in an ultrafine grained high entropy alloy, Appl. Mater. Today. 15 (2019) 525–530. https://doi.org/.

DOI: 10.1016/j.apmt.2019.04.001

Google Scholar

[21] S. Shukla, T. Wang, S. Cotton, R.S. Mishra, Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy, Scr. Mater. 156 (2018) 105–109.

DOI: 10.1016/j.scriptamat.2018.07.022

Google Scholar

[22] K. Liu, M. Komarasamy, B. Gwalani, S. Shukla, R.S. Mishra, Fatigue behavior of ultrafine grained triplex Al0.3CoCrFeNi high entropy alloy, Scr. Mater. 158 (2019) 116–120.

DOI: 10.1016/j.scriptamat.2018.08.048

Google Scholar

[23] R. Feng, Y. Rao, C. Liu, X. Xie, D. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H. Wang, K. An, P.K. Liaw, Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nat. Commun. 12(2021) 1-10.

DOI: 10.1038/s41467-021-23689-6

Google Scholar

[24] M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater. 60 (2012) 5723–5734.

DOI: 10.1016/j.actamat.2012.06.046

Google Scholar

[25] K.V.S. Thurston, B. Gludovatz, A. Hohenwarter, G. Laplanche, E.P. George, R.O. Ritchie, Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi, Intermetallics 88 (2017) 65–72.

DOI: 10.1016/j.intermet.2017.05.009

Google Scholar

[26] J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys, Proc. Natl. Acad. Sci. 115 (2018) 8919–8924.

DOI: 10.1073/pnas.1808660115

Google Scholar

[27] X. Wang, W. Bai, Z. Zhang, Z. Wang, X. Ren, Enhanced fatigue resistance of a face-centered-cubic single-phase Al0.3CoCrFeNi high-entropy alloy through planar deformation characteristic, Mater. Sci. Eng. A. 862 (2023) 144499. https://doi.org/https://doi.org/10.1016/j.msea.2022. 144499.

DOI: 10.1016/j.msea.2022.144499

Google Scholar

[28] W. Li, X. Long, S. Huang, Q. Fang, C. Jiang, Elevated fatigue crack growth resistance of Mo alloyed CoCrFeNi high entropy alloys, Eng. Fract. Mech. 218 (2019) 106579.

DOI: 10.1016/j.engfracmech.2019.106579

Google Scholar

[29] J.-P.Zou, X.-M. Luo, B. Zhang, Y.-W. Luo, H.-L. Chen, F. Liang, G.-P. Zhang, Enhancing bending fatigue resistance of the CoCrFeMnNi high-entropy alloy thin foils by Al addition, Mater. Sci. Eng. A. 831 (2022) 142281. https://doi.org/https://doi.org/10.1016/j.msea. 2021.142281.

DOI: 10.1016/j.msea.2021.142281

Google Scholar

[30] D. Taylor, The theory of critical distances: A history and a new definition, Struct. Durab. Heal. Monit. SDHM. 2 (2006) 1–10.

Google Scholar

[31] H. Neuber, Kerbspannungslehre, Springer-Verlag, Berlin, Heidelberg, 1958.

DOI: 10.1007/978-3-642-53069-2

Google Scholar

[32] R.E. Peterson, Notch Sensitivity, in: G. Sines, J.L. Waisman (Eds.), Metal Fatigue, McGraw Hill, New York, 1959: p.293–306.

Google Scholar

[33] P. Lukáš, M. Klesnil, Fatigue limit of notched bodies, Mater. Sci. Eng. 34 (1978) 61–66. https://doi.org/.

DOI: 10.1016/0025-5416(78)90009-5

Google Scholar

[34] M.H. El Haddad, T.H. Topper, K.N. Smith, Prediction of non-propagating cracks, Eng. Fract. Mech. 11 (1979) 573–584.

DOI: 10.1016/0013-7944(79)90081-X

Google Scholar

[35] R.A. Smith, K.J. Miller, Prediction of fatigue regimes in notched components, Int. J. Mech. Sci. 20 (1978) 201–206.

DOI: 10.1016/0020-7403(78)90082-6

Google Scholar

[36] M.M.I. Hammouda, R.A. Smith, K.J. Miller, Elastic‐Plastic Fracture Mechanics for Initiation and Propagation of Notch Fatigue Cracks, Fatigue Fract. Eng. Mater. Struct. 2 (1979) 139–154.

DOI: 10.1111/j.1460-2695.1979.tb01350.x

Google Scholar

[37] B. Atzori, P. Lazzarin, Notch Sensitivity and Defect Sensitivity under Fatigue Loading: Two Sides of the Same Medal, Int. J. Fract. 107 (2001) 1–8.

DOI: 10.1023/A:1007686727207

Google Scholar

[38] G. Nicoletto, A novel test method for the fatigue characterization of metal powder bed fused alloys, Procedia Struct. Integr. 7 (2017) 67–74.

DOI: 10.1016/j.prostr.2017.11.062

Google Scholar

[39] P. Lorenzino, A. Navarro, Grain size effects on notch sensitivity, Int. J. Fatigue, 70 (2015) 205-215. ISSN 0142-1123.

DOI: 10.1016/j.ijfatigue.2014.09.012

Google Scholar

[40] Z. Tang, T. Yuan, C.W. Tsai, J.W. Yeh, C.D. Lundin, P.K. Liaw, Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Mater. 99 (2015) 247–258.

DOI: 10.1016/j.actamat.2015.07.004

Google Scholar

[41] K. Liu, B. Gwalani, M. Komarasamy, S. Shukla, T. Wang, R.S. Mishra, Effect of nano-sized precipitates on the fatigue property of a lamellar structured high entropy alloy, Mater. Sci. Eng. A. 760 (2019) 225–230.

DOI: 10.1016/j.msea.2019.06.012

Google Scholar

[42] P.K. Liaw, S. Chen, K.-K. Tseng, J.-W. Yeh, T. Liu, F. Meng, Remarkable High-Cycle Fatigue Resistance of the TiZrNbHfTa High-Entropy Alloy and Associated Mechanisms, SSRN Electron. J. (2020). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3708710.

DOI: 10.2139/ssrn.3708757

Google Scholar

[43] B. Guennec, V. Kentheswaran, L. Perrière, A. Ueno, I. Guillot, J.P. Couzinié, G. Dirras, Four-point bending fatigue behavior of an equimolar BCC HfNbTaTiZr high-entropy alloy: Macroscopic and microscopic viewpoints, Mater. 4 (2018) 348–360.

DOI: 10.1016/j.mtla.2018.09.040

Google Scholar

[44] K. Suzuki, M. Koyama, S. Hamada, K. Tsuzaki, H. Noguchi, Planar slip-driven fatigue crack initiation and propagation in an equiatomic CrMnFeCoNi high-entropy alloy, Int. J. Fatigue. 133 (2020) 105418.

DOI: 10.1016/j.ijfatigue.2019.105418

Google Scholar

[45] K. Suzuki, M. Koyama, H. Noguchi, Small fatigue crack growth in a high entropy alloy, Procedia Struct. Integr. 13 (2018) 1065–1070.

DOI: 10.1016/j.prostr.2018.12.224

Google Scholar

[46] G.T. Lee, J.W. Won, K.R. Lim, M. Kang, H.J. Kwon, Y.S. Na, Y.S. Choi, Effect of Microstructural Features on the High-Cycle Fatigue Behavior of CoCrFeMnNi High-Entropy Alloys Deformed at Room and Cryogenic Temperatures, Met. Mater. Int. 27 (2021) 593–602.

DOI: 10.1007/s12540-020-00786-7

Google Scholar

[47] U. Hecht, S. Gein, O. Stryzhyboroda, E. Eshed, S. Osovski, The BCC-FCC Phase Transformation Pathways and Crystal Orientation Relationships in Dual Phase Materials From Al-(Co)-Cr-Fe-Ni Alloys, Front. Mater. 7 (2020) 1–11.

DOI: 10.3389/fmats.2020.00287

Google Scholar

[48] J.D. Fritz, Heat treating of austenitic and duplex stainless steels, in: J.L. Dossett, G.E. Totten, Heat Treating of Irons and Steels, ASM Handbook, ASM International, 2014.

DOI: 10.31399/asm.hb.v04d.9781627081689

Google Scholar

[49] N. Llorca-Isern, I. López-Jiménez, H. López-Luque, M.V. Biezma, A. Roca, Study of the precipitation of secondary phases in duplex and superduplex stainless steel, Mater. Sci. Forum 879 (2017), 2537–2542.

DOI: 10.4028/www.scientific.net/msf.879.2537

Google Scholar

[50] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, A. Cardona, Fiji: an open-source platform for biological-image analysis, Nature Methods 9(7) (2012), 676–682.

DOI: 10.1038/nmeth.2019

Google Scholar

[51] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3–20.

DOI: 10.1557/jmr.2004.19.1.3

Google Scholar

[52] G.M.P. W.C. Oliver, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. 7 (1992) 1564–1583.

DOI: 10.1557/JMR.1992.1564

Google Scholar

[53] Y. Gorash, D. Mackenzie, On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour, Open Eng. 7 (2017) 126–140.

DOI: 10.1515/eng-2017-0019

Google Scholar

[54] S.V. Sajadifar, T. Wegener, G.G. Yapici, T. Niendorf, Effect of grain size on the very high cycle fatigue behavior and notch sensitivity of titanium, Theor. Appl. Fract. Mech. 104 (2019) 102362. https://doi.org/.

DOI: 10.1016/j.tafmec.2019.102362

Google Scholar

[55] T.Niendorf, J. Dadda, D. Canadinc, H.J. Maier, I. Karaman, Monitoring the fatigue-induced damage evolution in ultrafine-grained interstitial-free steel utilizing digital image correlation, Mater. Sci. Eng.A. 517(2009) 225–234. https://doi.org/https://doi.org/10.1016/j.msea.2009.04. 053.

DOI: 10.1016/j.msea.2009.04.053

Google Scholar

[56] T. Niendorf, D. Canadinc, H.J. Maier, Fatigue Damage Evolution in Ultrafine-Grained Interstitial-Free Steel, Adv. Eng. Mater. 13 (2011) 275–280. https://doi.org/.

DOI: 10.1002/adem.201000272

Google Scholar

[57] G.M. Owolabi, R. Prasannavenkatesan, D.L. McDowell, Probabilistic framework for a microstructure-sensitive fatigue notch factor, Int. J. Fatigue. 32 (2010) 1378–1388. https://doi.org/.

DOI: 10.1016/j.ijfatigue.2010.02.003

Google Scholar

[58] G. Owolabi, B. Egboiyi, L. Shi, H. Whitworth, Microstructure-dependent fatigue damage process zone and notch sensitivity index, Int. J. Fract. 170 (2011) 159–173.

DOI: 10.1007/s10704-011-9620-z

Google Scholar

[59] G. Owolabi, O. Okeyoyin, A. Olasumboye, H. Whitworth, A new approach to estimating the fatigue notch factor of Ti-6Al-4V components, Int. J. Fatigue. 82 (2016) 29–34.

DOI: 10.1016/j.ijfatigue.2015.08.018

Google Scholar

[60] J. Papuga, I. Vízková, M. Lutovinov, M. Nesládek, Mean stress effect in stress-life fatigue prediction re-evaluated, MATEC Web Conf. 165 (2018) 10018.

DOI: 10.1051/matecconf/201816510018

Google Scholar

[61] J. Goodman, Mechanics Applied to Engineering, Longman, Green & Company, London, 1899.

Google Scholar

[62] J. Marin, Interpretation of fatigue strengths for combined stresses, in: Proceedings of the International Conference on Fatigue of Metals, Institution of Mechanical Engineers, London, UK (1956): p.184–195.

Google Scholar

[63] J. Schijve, Fatigue Properties, in: J. Schijve (Ed.), Fatigue of Structures and Materials, Springer Netherlands, Dordrecht, 2009: p.141–169.

DOI: 10.1007/978-1-4020-6808-9_6

Google Scholar

[64] G. Oh, Y. Akiniwa, Mean and residual stress effects on fatigue behavior in a pre-strained corner of stainless steel sheet, Int. J. Fatigue. 145 (2021) 106125. https://doi.org/.

DOI: 10.1016/j.ijfatigue.2020.106125

Google Scholar

[65] L. Pallarés-Santasmartas, J. Albizuri, A. Avilés, R. Avilés, Mean stress effect on the axial fatigue strength of DIN 34CrNiMo6 quenched and tempered steel, Metals 8 (2018) 1–19.

DOI: 10.3390/met8040213

Google Scholar

[66] S. Bhat, V.G. Ukadgaonker, Theoretical methodology for life estimation of ductile notched member under constant amplitude load in high cycle fatigue: A review, Artic. J. Basic Appl. Res. Int. (2016). www.ikpress.org.

Google Scholar

[67] A. Turnbull, E.R. De Los Rios, The effect of grain size on the fatigue of commercially pure Aluminium, Fatigue Fract. Engng. Mater. Struct. 18 (1995) 1455-1467.

DOI: 10.1111/j.1460-2695.1995.tb00868.x

Google Scholar

[68] E.O. Hall, The deformation and aging of mild steel: III Discussion results, Proc. Phys. Soc. London, B64 (1951), 747-753.

DOI: 10.1088/0370-1301/64/9/303

Google Scholar

[69] N.J. Petch, The cleavage strength of polycrystals, Iron Steel Inst, 174 (1953), 25-28.

Google Scholar

[70] M. Mlikota, K. Dogahe, S. Schmauder, Ž. Božić, Influence of the grain size on the fatigue initiation life curve, Int. J. Fatigue. 158 (2022) 106562. https://doi.org/.

DOI: 10.1016/j.ijfatigue.2021.106562

Google Scholar