[1]
Johnson, D. Global, Methanol Market Review, IHS Inc. (2012). Available online: http://www.ptq.pemex.com/ productosyservicios/eventosdescargas/Documents/Foro (accessed on 1 June 2020).
Google Scholar
[2]
Lima Neto EP., Almeida ELF., Bomtempo JV Restructuring the cadeias the chemical and energy: the way methanol., Revista Brasileira de Energia, (2008) V.14, №2, pp.127-149.
Google Scholar
[3]
Han, S.; Sik, C. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Convers. Manag. (2014) 86, p.848–863.
DOI: 10.1016/j.enconman.2015.06.015
Google Scholar
[4]
V.M. Abbasov., H.C. Ibrahimov., S.R. Haciyeva., S.A. Mammadxanova., E.I. Abdullayev F.A. Amirov .Chemistry technology of oil and gas treatment processes., Science publishing house, Baki, ISBN 978-9952-495-15-7, (2014) 408p.
Google Scholar
[5]
Duncan Seddon, Methanol and dimethyl ether (DME) production from synthesis gas, 2010,DUNCAN SEDDON & ASSOCIATES PTY. LTD. JANUARY
DOI: 10.1533/9780857093783.4.363
Google Scholar
[6]
Dr Sobhan Ghosh, PRODUCTION OF METHANOL AND DME August (2016) 123p.
Google Scholar
[7]
Arcoumanis, C.; Bae, C.; Crookes, R.; Kinoshita, E. The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines: A review. Fuel (2008) 87, p.1014–1030.
DOI: 10.1016/j.fuel.2007.06.007
Google Scholar
[8]
Trippe, F.; Fröhling, M.; Schultuann,F.; Stahl, R.; Henrich, E.,; Dalai,A. Comprehensive techno-economic assessment of dimethyl ether (DME) synthesis and Fischer-Tropsch synthesis as alternative process steps within biomass to liquid production. Fuel Process. Technol. (2013) 106, p.577–586.
DOI: 10.1016/j.fuproc.2012.09.029
Google Scholar
[9]
Azizi, Z.; Rezaeimanesh, M.; Tohidian, T.; Rahimpour, M.R. Dimethyl ether: A review of technologies and production challenges. Chem. Eng. Process. Process Intensif. (2014) 82, p.150–172.
DOI: 10.1016/j.cep.2014.06.007
Google Scholar
[10]
Vanessa M.Lebarbier, Robert A.Dagle, Libor Kovarik, Jair A.Lizarazo-Adarme, David L.King and Daniel R. Palo.Synthesis of methanol and dimethyl ether from syngas over Pd/ZnO/Al2O3 catalysts. Catalysis Science and Technology. (2012) vol. 2, iss. 10, p.2116.
DOI: 10.1039/c2cy20315d
Google Scholar
[11]
P.G. Musich, L.N. Kurina, A.V. Vosmerikov, Katalizatory pryamogo polucheniya dimetilovogo efira iz sintez gaza, Kataliz v khimicheskoy i neftekhimicheskoy promyshlennosti (in Russian) No 6, (2014) pp.33-37.
Google Scholar
[12]
Vibin Vargheese, Yasukazu Kobayashi, S Ted Oyama, The Direct Partial Oxidation of Methane to Dimethyl Ether over Pt/Y2O3 Catalysts Using an NO/O2 Shuttle, Angewandte Chemie, (2020) 132 (38) pp.16787-16793.
DOI: 10.1002/ange.202006020
Google Scholar
[13]
I Tyrone Ghampson, Gwang-Nam Yun, Arisa Kaneko, Vibin Vargheese, Kyoko K Bando, Tetsuya Shishido, S Ted Oyama, Effect of Support and Pd Cluster Size on Catalytic Methane Partial Oxidation to Dimethyl Ether Using a NO/O2 Shuttle, ACS Catalysis (2022) 12 (18), pp.11190-11205.
DOI: 10.1021/acscatal.2c02887
Google Scholar
[14]
Sun, K.; Lu, W.; Qiu, F.; Liu, S.; Xu, X. Direct synthesis of DME over bifunctional catalyst: Surface properties and catalytic performance. Appl. Catal. A Gen. (2003) 252, p.243–249.
DOI: 10.1016/s0926-860x(03)00466-6
Google Scholar
[15]
Bahmanpour, A.M.; Héroguel, F.; Baranowski, C.J.; Luterbacher, J.S.; Kröcher, O. Selective synthesis of dimethyl ether on eco-friendly K10 montmorillonite clay. Appl. Catal. A Gen. (2018) 560, p.165–170.
DOI: 10.1016/j.apcata.2018.05.006
Google Scholar
[16]
Rownaghi, A.A.; Rezaei, F.; Stante, M.; Hedlund, J. Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Appl. Catal. B Environ. (2012) 119–120, p.56–61.
DOI: 10.1016/j.apcatb.2012.02.017
Google Scholar
[17]
N.A. Stephenson, A.T. Bell, Effects of porphyrin composition on the activity and selectivity of the iron (III) porphyrin catalysts for the epoxidation of cyclooctene by hydrogen peroxide, Journal of Molecular Catalysis A: Chemical, Elsevier, July (2007) V. 272, No 1-2, pp.108-117.
DOI: 10.1016/j.molcata.2007.03.030
Google Scholar
[18]
Nagiev T.M. Coherent Synchronized Oxidation Reactions by Hydrogen Peroxide. Amsterdam: Elsevier, (2007) 325 p.
Google Scholar
[19]
Sariyya Aghamammadova, Inara Nagieva, Latifa Gasanova, Tofik Nagiev Catalytic monooxidation of cyclohexane by hydrogen peroxide in the gas phase // Reaction Kinetics, Mechanisms and Catalysis 2019, v 126, p.701–715
DOI: 10.1007/s11144-018-01525-1
Google Scholar
[20]
Nasirova U.V., Nagieva I.T., Gasanova L.M., Nagiev T.M. Kinetics and Mechanism of Coherent-Synchronized Ethylene Monooxidation by Hydrogen Peroxide on a Biomimetic Catalyst, per-FTPhPFe(III)OH/Al2O3. Journal of Materials Science and Engineering, April (2012) V. 2, No 4, pp.306-312.
DOI: 10.1134/s0036024411120235
Google Scholar
[21]
Patent AZ, № İ 20220060, T.M. Nagiev, L.M. Gasanova, G.Ch. Nahmatova., "Method of methanol obtaining", 27.09.2022.
Google Scholar
[22]
Gulshan Nahmatova, Latifa Gasanova, Olga Vodyankina, Eldar Dakhnavi, Tofik Nagiev, Coherently synchronized reaction of methane oxidation by green oxidizing agent – hydrogen peroxide over the biomimetic catalyst – iron pentafluorotetraphenylporphyrin deposited on alumina, Reaction Kinetics, Mechanisms and Catalysis, (2022) V.135, pp.3285-3301. https: doi.org/.
DOI: 10.1007/s11144-022-02300-z
Google Scholar
[23]
Ahmad Bahrein, Elham Ameri Thermodynamic İnvestigation of Temperature Effects on Dimethyl Ether Reforming//International Journal ol Basic Sciences, Applied Research, V.3 (SP), (2014) pp.187-190.
Google Scholar
[24]
Poltorak O.M., Chukrai E.S. Fiziko-khimicheskie osnovy fermentativnogo kataliza. M:.Vysshaya Shkola, (1971) 312 p.
Google Scholar
[25]
Mercedes Alfonso-Prieto, Xevi Biarne´s, Pietro Vidossich, and Carme Rovira, The Molecular Mechanism of the Catalase Reaction. American Chemical Society, (2009) V.131, 33, p.11751–11761.
DOI: 10.1021/ja9018572
Google Scholar