A Quantum Chemical Study on the Bonding Mechanism, Electronic Structure, and Optical Properties of Cellulose and Polyaniline Nanohybrid

Article Preview

Abstract:

This study provides accounts of the bonding character, electronic structure, and optical properties of the cellulose–polyaniline hybrid complex using principles of quantum mechanics. The calculations revealed cellulose and polyaniline binding energy per unit ranged from -0.52 eV to -0.68 eV. The electron localization function of the complex revealed that there was no value at the interface but deformed basins, indicating a physisorption type of interaction. The highest occupied molecular orbitals and lowest molecular orbitals are mainly dominated by the polyaniline, with minor hybridization of the orbitals of the cellulose in all configurations. These results indicate that the bonding between cellulose and polyaniline is characterized as an unshared electron interaction. Generally, the density of states of the cellulose and polyaniline complex can be considered a superposition of the states of isolated subsystems—the bandgap of the complex ranges from 2.30 eV to 2.87 eV. The lowest bandgap is observed when the prototype polyaniline is placed near the cellulose hydroxy and hydroxymethyl group. Further, the optical absorption spectra are calculated using time-dependent density functional theory. The results indicate that the prominent peak of the prototype polyaniline at 3.59 eV (345.36 nm) is suppressed at the complex. Meanwhile, in the higher energy region, the optical absorption spectra can be considered a superposition of the absorption spectra of the isolated constituents. The results presented here provide new information on the cellulose–polyaniline complex's bonding mechanism and give the resulting electronic–optical properties. The results will be helpful in the development of innovative biomaterials, fibers, and multifunctional composites based on cellulose and polyaniline.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1121)

Pages:

143-153

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206.

DOI: 10.3390/polym14153206

Google Scholar

[2] Kundu, R.; Mahada, P.; Chhirang, B.; Das, B. Cellulose Hydrogels: Green and Sustainable Soft Biomaterials. Current Research in Green and Sustainable Chemistry 2022, 5, 100252.

DOI: 10.1016/j.crgsc.2021.100252

Google Scholar

[3] Chaka, K.T. Extraction of Cellulose Nanocrystals from Agricultural By-Products: A Review. Green Chemistry Letters and Reviews 2022, 15, 582–597.

DOI: 10.1080/17518253.2022.2121183

Google Scholar

[4] Brakat, A.; Zhu, H. Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform. Nano-Micro Lett. 2021, 13, 94.

DOI: 10.1007/s40820-021-00627-1

Google Scholar

[5] Miyashiro, D.; Hamano, R.; Umemura, K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials 2020, 10, 186.

DOI: 10.3390/nano10020186

Google Scholar

[6] Seydibeyoğlu, M.Ö.; Dogru, A.; Wang, J.; Rencheck, M.; Han, Y.; Wang, L.; Seydibeyoğlu, E.A.; Zhao, X.; Ong, K.; Shatkin, J.A.; et al. Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers 2023, 15, 984.

DOI: 10.3390/polym15040984

Google Scholar

[7] Rana, A.K.; Scarpa, F.; Thakur, V.K. Cellulose/Polyaniline Hybrid Nanocomposites: Design, Fabrication, and Emerging Multidimensional Applications. Industrial Crops and Products 2022, 187, 115356.

DOI: 10.1016/j.indcrop.2022.115356

Google Scholar

[8] Babel, V.; Hiran, B.L. A Review on Polyaniline Composites: Synthesis, Characterization, and Applications. Polymer Composites 2021, 42, 3142–3157.

DOI: 10.1002/pc.26048

Google Scholar

[9] Goswami, S.; Nandy, S.; Fortunato, E.; Martins, R. Polyaniline and Its Composites Engineering: A Class of Multifunctional Smart Energy Materials. Journal of Solid State Chemistry 2023, 317, 123679.

DOI: 10.1016/j.jssc.2022.123679

Google Scholar

[10] Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A.R.; Lim, H.N. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers 2021, 13, 2003.

DOI: 10.3390/polym13122003

Google Scholar

[11] Salehi, M.H.; Golbaten-Mofrad, H.; Jafari, S.H.; Goodarzi, V.; Entezari, M.; Hashemi, M.; Zamanlui, S. Electrically Conductive Biocompatible Composite Aerogel Based on Nanofibrillated Template of Bacterial Cellulose/Polyaniline/Nano-Clay. International Journal of Biological Macromolecules 2021, 173, 467–480.

DOI: 10.1016/j.ijbiomac.2021.01.121

Google Scholar

[12] Sharma, K.; Pareek, K.; Rohan, R.; Kumar, P. Flexible Supercapacitor Based on Three-Dimensional Cellulose/Graphite/Polyaniline Composite. International Journal of Energy Research 2019, 43, 604–611.

DOI: 10.1002/er.4277

Google Scholar

[13] Munio, A.A.; Ambolode II, L.C.; Ii Exploring the Functionality of Cellulose Biopolymer as Carbon Nanotube Composite and Heavy Metals Adsorbent Material: Insights from First-Principles Calculations. Biointerface Research in Applied Chemistry 2023, 13.

Google Scholar

[14] Shen, Y.; Yang, X.; Bian, Y.; Nie, K.; Liu, S.; Tang, K.; Zhang, R.; Zheng, Y.; Gu, S. First-Principles Insights on the Electronic and Optical Properties of ZnO@CNT Core@shell Nanostructure. Sci Rep 2018, 8, 15464.

DOI: 10.1038/s41598-018-33991-x

Google Scholar

[15] Munio, A.A.Z.; Pido, A.A.G.; Ii, L.C.C.A. First-Principles Insights on the Bonding Mechanism and Electronic Structure of SWCNT and Oxygenated-SWCNT Functionalized by Cellulose Biopolymer. Nano Hybrids and Composites 2023, 40, 51–63.

DOI: 10.4028/p-pNM7bg

Google Scholar

[16] PIDO, A.; MUNIO, A. Electronic Structures and Dielectric Function of (5, 5) CNT-C2H4O System: A First-Principles Study on the Detection Capability of CNT for Gas Sensing Applications. Turkish Journal of Chemistry 2023, 47, 782–788.

DOI: 10.55730/1300-0527.3578

Google Scholar

[17] Pido, A.A.; Rangaig, N.; Munio, A.A.; Janayon, R.V.; II, L. Electronic and Optical Properties of Single-Walled Carbon Nanotube Functionalized by CH3COOH. Nano Hybrids and Composites 2023, 40, 25–33.

DOI: 10.4028/p-I3oNUx

Google Scholar

[18] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J Phys Condens Matter 2009, 21, 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[19] Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, F.; et al. Quantum ESPRESSO toward the Exascale. J. Chem. Phys. 2020, 152, 154105.

DOI: 10.1063/5.0005082

Google Scholar

[20] Hamann, D.R. Optimized Norm-Conserving Vanderbilt Pseudopotentials. Phys. Rev. B 2013, 88, 085117.

DOI: 10.1103/PhysRevB.88.085117

Google Scholar

[21] Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

DOI: 10.1103/PhysRevLett.77.3865

Google Scholar

[22] Malcıoğlu, O.B.; Gebauer, R.; Rocca, D.; Baroni, S. turboTDDFT – A Code for the Simulation of Molecular Spectra Using the Liouville–Lanczos Approach to Time-Dependent Density-Functional Perturbation Theory. Computer Physics Communications 2011, 182, 1744–1754.

DOI: 10.1016/j.cpc.2011.04.020

Google Scholar

[23] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

DOI: 10.1063/1.3382344

Google Scholar

[24] Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm without Lattice Bias. J. Phys.: Condens. Matter 2009, 21, 084204.

DOI: 10.1088/0953-8984/21/8/084204

Google Scholar

[25] Koumpouras, K.; Larsson, J.A. Distinguishing between Chemical Bonding and Physical Binding Using Electron Localization Function (ELF). J. Phys.: Condens. Matter 2020, 32, 315502.

DOI: 10.1088/1361-648X/ab7fd8

Google Scholar

[26] Becke, A.D.; Edgecombe, K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403.

DOI: 10.1063/1.458517

Google Scholar

[27] Jha, S.K.; Roth, M.; Todde, G.; Buchanan, J.P.; Moser, R.D.; Shukla, M.K.; Subramanian, G. Role of Stone-Wales Defects on the Interfacial Interactions among Graphene, Carbon Nanotubes, and Nylon 6: A First-Principles Study. The Journal of Chemical Physics 2018, 149, 054703.

DOI: 10.1063/1.5032081

Google Scholar

[28] Munio, A.A.; Domato, D.; Pido, A.A.; Ambolode II, L.C. Non-Covalent Functionalization of Biphenylene Network by Cellulose and Nylon-6: A First-Principles Study. Biointerface Research in Applied Chemistry 2023, 13.

Google Scholar

[29] Pido, A.A.; Munio, A.A.; Ambolode II, L.C. Ab Initio Calculations of the Atomic Structure, Stability, and Electronic Properties of (C6H10O5)2 Encapsulation into Hydrogen-Doped Carbon Nanotube. Nano Hybrids 2023, 38.

DOI: 10.4028/p-3uk80a

Google Scholar

[30] Jelil, J.; Abdurahman, A.; Gülseren, O.; Schwingenschlogl, U. Non-Covalent Functionalization of Single Wall Carbon Nanotubes and Graphene by a Conjugated Polymer. Applied Physics Letters 2014, 105, 013103–013103.

DOI: 10.1063/1.4886968

Google Scholar

[31] Majidi, R.; Taghiyari, H.R.; Ori, O. Encapsulation of Cellulose Chain into Carbon Nanotubes and Boron Nitride Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures 2017, 25, 646–651.

DOI: 10.1080/1536383X.2017.1373642

Google Scholar

[32] Majidi, R.; Taghiyari, H.R. ELECTRONIC PROPERTIES OF GRAPHENE OXIDE IN THE PRESENCE OF CELLULOSE CHAINS: A DENSITY FUNCTIONAL THEORY APPROACH. Cellulose Chemistry and Technology 2019, 53, 411–416.

DOI: 10.35812/CelluloseChemTechnol.2019.53.41

Google Scholar

[33] Hadian-Jazi, N.; Zare-Dehnavi, N.; Abdolhosseini-Sarsari, I. Dynamical and Turbo TDDFT Study of Polyaniline Emeraldine for CO, NH3, CO2 Gas Sensing. Appl. Phys. A 2020, 126, 428.

DOI: 10.1007/s00339-020-03506-5

Google Scholar