[1]
Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206.
DOI: 10.3390/polym14153206
Google Scholar
[2]
Kundu, R.; Mahada, P.; Chhirang, B.; Das, B. Cellulose Hydrogels: Green and Sustainable Soft Biomaterials. Current Research in Green and Sustainable Chemistry 2022, 5, 100252.
DOI: 10.1016/j.crgsc.2021.100252
Google Scholar
[3]
Chaka, K.T. Extraction of Cellulose Nanocrystals from Agricultural By-Products: A Review. Green Chemistry Letters and Reviews 2022, 15, 582–597.
DOI: 10.1080/17518253.2022.2121183
Google Scholar
[4]
Brakat, A.; Zhu, H. Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform. Nano-Micro Lett. 2021, 13, 94.
DOI: 10.1007/s40820-021-00627-1
Google Scholar
[5]
Miyashiro, D.; Hamano, R.; Umemura, K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials 2020, 10, 186.
DOI: 10.3390/nano10020186
Google Scholar
[6]
Seydibeyoğlu, M.Ö.; Dogru, A.; Wang, J.; Rencheck, M.; Han, Y.; Wang, L.; Seydibeyoğlu, E.A.; Zhao, X.; Ong, K.; Shatkin, J.A.; et al. Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers 2023, 15, 984.
DOI: 10.3390/polym15040984
Google Scholar
[7]
Rana, A.K.; Scarpa, F.; Thakur, V.K. Cellulose/Polyaniline Hybrid Nanocomposites: Design, Fabrication, and Emerging Multidimensional Applications. Industrial Crops and Products 2022, 187, 115356.
DOI: 10.1016/j.indcrop.2022.115356
Google Scholar
[8]
Babel, V.; Hiran, B.L. A Review on Polyaniline Composites: Synthesis, Characterization, and Applications. Polymer Composites 2021, 42, 3142–3157.
DOI: 10.1002/pc.26048
Google Scholar
[9]
Goswami, S.; Nandy, S.; Fortunato, E.; Martins, R. Polyaniline and Its Composites Engineering: A Class of Multifunctional Smart Energy Materials. Journal of Solid State Chemistry 2023, 317, 123679.
DOI: 10.1016/j.jssc.2022.123679
Google Scholar
[10]
Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A.R.; Lim, H.N. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers 2021, 13, 2003.
DOI: 10.3390/polym13122003
Google Scholar
[11]
Salehi, M.H.; Golbaten-Mofrad, H.; Jafari, S.H.; Goodarzi, V.; Entezari, M.; Hashemi, M.; Zamanlui, S. Electrically Conductive Biocompatible Composite Aerogel Based on Nanofibrillated Template of Bacterial Cellulose/Polyaniline/Nano-Clay. International Journal of Biological Macromolecules 2021, 173, 467–480.
DOI: 10.1016/j.ijbiomac.2021.01.121
Google Scholar
[12]
Sharma, K.; Pareek, K.; Rohan, R.; Kumar, P. Flexible Supercapacitor Based on Three-Dimensional Cellulose/Graphite/Polyaniline Composite. International Journal of Energy Research 2019, 43, 604–611.
DOI: 10.1002/er.4277
Google Scholar
[13]
Munio, A.A.; Ambolode II, L.C.; Ii Exploring the Functionality of Cellulose Biopolymer as Carbon Nanotube Composite and Heavy Metals Adsorbent Material: Insights from First-Principles Calculations. Biointerface Research in Applied Chemistry 2023, 13.
Google Scholar
[14]
Shen, Y.; Yang, X.; Bian, Y.; Nie, K.; Liu, S.; Tang, K.; Zhang, R.; Zheng, Y.; Gu, S. First-Principles Insights on the Electronic and Optical Properties of ZnO@CNT Core@shell Nanostructure. Sci Rep 2018, 8, 15464.
DOI: 10.1038/s41598-018-33991-x
Google Scholar
[15]
Munio, A.A.Z.; Pido, A.A.G.; Ii, L.C.C.A. First-Principles Insights on the Bonding Mechanism and Electronic Structure of SWCNT and Oxygenated-SWCNT Functionalized by Cellulose Biopolymer. Nano Hybrids and Composites 2023, 40, 51–63.
DOI: 10.4028/p-pNM7bg
Google Scholar
[16]
PIDO, A.; MUNIO, A. Electronic Structures and Dielectric Function of (5, 5) CNT-C2H4O System: A First-Principles Study on the Detection Capability of CNT for Gas Sensing Applications. Turkish Journal of Chemistry 2023, 47, 782–788.
DOI: 10.55730/1300-0527.3578
Google Scholar
[17]
Pido, A.A.; Rangaig, N.; Munio, A.A.; Janayon, R.V.; II, L. Electronic and Optical Properties of Single-Walled Carbon Nanotube Functionalized by CH3COOH. Nano Hybrids and Composites 2023, 40, 25–33.
DOI: 10.4028/p-I3oNUx
Google Scholar
[18]
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J Phys Condens Matter 2009, 21, 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[19]
Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, F.; et al. Quantum ESPRESSO toward the Exascale. J. Chem. Phys. 2020, 152, 154105.
DOI: 10.1063/5.0005082
Google Scholar
[20]
Hamann, D.R. Optimized Norm-Conserving Vanderbilt Pseudopotentials. Phys. Rev. B 2013, 88, 085117.
DOI: 10.1103/PhysRevB.88.085117
Google Scholar
[21]
Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
DOI: 10.1103/PhysRevLett.77.3865
Google Scholar
[22]
Malcıoğlu, O.B.; Gebauer, R.; Rocca, D.; Baroni, S. turboTDDFT – A Code for the Simulation of Molecular Spectra Using the Liouville–Lanczos Approach to Time-Dependent Density-Functional Perturbation Theory. Computer Physics Communications 2011, 182, 1744–1754.
DOI: 10.1016/j.cpc.2011.04.020
Google Scholar
[23]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
DOI: 10.1063/1.3382344
Google Scholar
[24]
Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm without Lattice Bias. J. Phys.: Condens. Matter 2009, 21, 084204.
DOI: 10.1088/0953-8984/21/8/084204
Google Scholar
[25]
Koumpouras, K.; Larsson, J.A. Distinguishing between Chemical Bonding and Physical Binding Using Electron Localization Function (ELF). J. Phys.: Condens. Matter 2020, 32, 315502.
DOI: 10.1088/1361-648X/ab7fd8
Google Scholar
[26]
Becke, A.D.; Edgecombe, K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403.
DOI: 10.1063/1.458517
Google Scholar
[27]
Jha, S.K.; Roth, M.; Todde, G.; Buchanan, J.P.; Moser, R.D.; Shukla, M.K.; Subramanian, G. Role of Stone-Wales Defects on the Interfacial Interactions among Graphene, Carbon Nanotubes, and Nylon 6: A First-Principles Study. The Journal of Chemical Physics 2018, 149, 054703.
DOI: 10.1063/1.5032081
Google Scholar
[28]
Munio, A.A.; Domato, D.; Pido, A.A.; Ambolode II, L.C. Non-Covalent Functionalization of Biphenylene Network by Cellulose and Nylon-6: A First-Principles Study. Biointerface Research in Applied Chemistry 2023, 13.
Google Scholar
[29]
Pido, A.A.; Munio, A.A.; Ambolode II, L.C. Ab Initio Calculations of the Atomic Structure, Stability, and Electronic Properties of (C6H10O5)2 Encapsulation into Hydrogen-Doped Carbon Nanotube. Nano Hybrids 2023, 38.
DOI: 10.4028/p-3uk80a
Google Scholar
[30]
Jelil, J.; Abdurahman, A.; Gülseren, O.; Schwingenschlogl, U. Non-Covalent Functionalization of Single Wall Carbon Nanotubes and Graphene by a Conjugated Polymer. Applied Physics Letters 2014, 105, 013103–013103.
DOI: 10.1063/1.4886968
Google Scholar
[31]
Majidi, R.; Taghiyari, H.R.; Ori, O. Encapsulation of Cellulose Chain into Carbon Nanotubes and Boron Nitride Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures 2017, 25, 646–651.
DOI: 10.1080/1536383X.2017.1373642
Google Scholar
[32]
Majidi, R.; Taghiyari, H.R. ELECTRONIC PROPERTIES OF GRAPHENE OXIDE IN THE PRESENCE OF CELLULOSE CHAINS: A DENSITY FUNCTIONAL THEORY APPROACH. Cellulose Chemistry and Technology 2019, 53, 411–416.
DOI: 10.35812/CelluloseChemTechnol.2019.53.41
Google Scholar
[33]
Hadian-Jazi, N.; Zare-Dehnavi, N.; Abdolhosseini-Sarsari, I. Dynamical and Turbo TDDFT Study of Polyaniline Emeraldine for CO, NH3, CO2 Gas Sensing. Appl. Phys. A 2020, 126, 428.
DOI: 10.1007/s00339-020-03506-5
Google Scholar