Silica Xerogel Modified with Cetyltrimethylammonium Bromide as an Effective Adsorbent for Methyl Orange Dye

Article Preview

Abstract:

The study of water treatment technologies has been growing due to mounting concerns regarding dye contamination. Adsorption-based technologies that use porous materials have been proven useful in water decontamination. However, porous silica xerogels have not been extensively explored as adsorbents for the methyl orange (MO) dye. In this study, the MO-adsorptive behavior of silica xerogels was investigated. Two silica xerogels were synthesized using tetraethyl orthosilicate, and one was modified with cetyltrimethylammonium bromide (CTAB). The adsorptive capacities of the unmodified silica xerogel (SiO2-UN) and the CTAB-modified silica xerogel (SiO2-CTAB) were compared. Results showed a better fit to the Langmuir isotherm model, with maximum adsorbed amounts of 1.52 mg g-1 and 25.5 mg g-1 for SiO2-UN and SiO2-CTAB, respectively. The higher value for SiO2-CTAB is mainly attributed to the electrostatic interactions between MO and the ammonium groups present in the modified xerogel. A study of the porosities of both xerogels, using N2 adsorption and desorption isotherms, indicated the samples were mesoporous. These findings suggest that SiO2-CTAB exhibits favorable MO adsorption and could be employed in future wastewater treatment processes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1121)

Pages:

85-96

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Khurana, A. Saxena, Bharti, J.M. Khurana and P.K. Rai, Removal of Dyes Using Graphene-Based Composites: a Review, Water, Air, Soil Pollut. 228 (2017) 180-196.

DOI: 10.1007/s11270-017-3361-1

Google Scholar

[2] D.A. Yaseen and M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Int. J. Food Sci. Technol. 16 (2019) 1193-1226.

DOI: 10.1007/s13762-018-2130-z

Google Scholar

[3] S.O. Akpotu and B. Moodley, Effect of synthesis conditions on the morphology of mesoporous silica from elephant grass and its application in the adsorption of cationic and anionic dyes, J. Environ. Chem. Eng. 6 (2018) 5341-5350.

DOI: 10.1016/j.jece.2018.08.027

Google Scholar

[4] B.B. Mohammed, H. Lgaz, A.A. Alrashdi, K. Yamni, N. Tijani,Y. Dehmani, H.E. Hamdani and I.M. Chung, Insights into methyl orange adsorption behavior on a cadmium zeolitic-imidazolate framework Cd-ZIF-8: A joint experimental and theoretical study, Arab. J. Chem. 14 (2021) 102897-102909.

DOI: 10.1016/j.arabjc.2020.11.003

Google Scholar

[5] M.T. Yagub, T.K. Sen, S. Afroze and H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci. 209 (2014) 172-184.

DOI: 10.1016/j.cis.2014.04.002

Google Scholar

[6] K.O. Iwuozor, J.O. Ighalo, E.C. Emenike, L.A. Ogunfowora and C.A. Igwegbe, Adsorption of methyl orange: A review on adsorbent performance, Curr. Res. Green Sustain. Chem. 4 (2021) 100179-100194.

DOI: 10.1016/j.crgsc.2021.100179

Google Scholar

[7] E. Forgacs, T. Cserháti and G. Oros, Removal of synthetic dyes from wastewaters: a review, Environ. Int. 30 (2004) 953-971.

DOI: 10.1016/j.envint.2004.02.001

Google Scholar

[8] A.H. Naggar, T.A. Seaf-elnasr, M. Thabet, E.M. A. El-monaem, K.F. Chong, Z.H. Bakr, I.H. Alsohaimi, H.M. Ali, K.S. El-Nasser and H. Gomaa, A hybrid mesoporous composite of SnO2 and MgO for adsorption and photocatalytic degradation of anionic dye from a real industrial effluent water, Environ. Sci. Pollut. Res. 30 (2023) 108247-108262.

DOI: 10.1007/s11356-023-29649-5

Google Scholar

[9] M. Ahmadian, H. Derakhshankhah and M. Jaymand, Biosorptive removal of organic dyes using natural gums-based materials: a comprehensive review, J. Ind. Eng. Chem. 124 (2023) 102-131.

DOI: 10.1016/j.jiec.2023.05.002

Google Scholar

[10] V.K. Gupta and Suhas, Application of low-cost adsorbents for dye removal - A review, J. Environ. Manage. 90 (2009) 2313-2342.

DOI: 10.1016/j.jenvman.2008.11.017

Google Scholar

[11] B.N. Bhadra, N.A. Khan and S.H. Jhung, Co supported on N-doped carbon, derived from bimetallic azolate framework-6: a highly effective oxidative desulfurization catalyst, Chem. Eng. J. 334 (2018) 2215-2221.

DOI: 10.1039/c9ta03613j

Google Scholar

[12] V. Katheresan, J. Kansedo and S.Y. Lau, Efficiency of various recent wastewater dye removal methods: A review, J. Environ. Chem. Eng. 6 (2018) 4676-4697.

DOI: 10.1016/j.jece.2018.06.060

Google Scholar

[13] S. Kaur, S. Rani and R.K. Mahajan, Adsorptive removal of dye crystal violet onto low-cost carbon produced from Eichhornia plant: kinetic, equilibrium, and thermodynamic studies, Desalination Water Treat. 53 (2015) 543-556.

DOI: 10.1080/19443994.2013.841109

Google Scholar

[14] W. Zhang, Q. Yang, Q. Luo, L. Shi and S. Meng, Laccase-Carbon Nanotube Nanocomposites for Enhancing Dyes Removal, J. Clean. Prod. 242 (2020) 118425-118435.

DOI: 10.1016/j.jclepro.2019.118425

Google Scholar

[15] H. Han, W. Wei, Z. Jiang, J. Lu, J. Zhu and J. Xie, Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel, Colloids Surf., A 509 (2016) 539-549.

DOI: 10.1016/j.colsurfa.2016.09.056

Google Scholar

[16] A. Mittal, J. Mittal, A. Malviya, D. Kaur and V.K. Gupta, Adsorption of hazardous dye crystal violet from wastewater by waste materials, J. Colloid Interface Sci. 343 (2010) 463-473.

DOI: 10.1016/j.jcis.2009.11.060

Google Scholar

[17] K.Ghosh, N. Bar, A.B. Biswas and S.K. Das, Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application, Sustain. Chem. Pharm. 19 (2021) 100370-100381.

DOI: 10.1016/j.scp.2020.100370

Google Scholar

[18] M.C. Bruzzoniti, R.M. De Carlo, L. Rivoira, M. Del Bubba, M. Pavani, M. Riatti and B. Onida, Adsorption of bentazone herbicide onto mesoporous silica: application to environmental water purification, Environ. Sci. Pollut. Res. 23 (2016) 5399-5409.

DOI: 10.1007/s11356-015-5755-1

Google Scholar

[19] Z. Liu, A. Zhou, G. Wang and X. Zhao, Adsorption Behavior of Methyl Orange onto Modified Ultrafine Coal Powder, Chin. J. Chem. Eng. 17 (2009) 942-948.

DOI: 10.1016/s1004-9541(08)60300-6

Google Scholar

[20] A.M. Rabie, H.M. Abd El-Salam, M.A. Betiha, H.H. El-Maghrabi and D. Aman, Mercury removal from aqueous solution via functionalized mesoporous silica nanoparticles with the amine compound, Egypt. J. Pet. 28 (2019) 289-296.

DOI: 10.1016/j.ejpe.2019.07.003

Google Scholar

[21] Y. Li, S. Wang, Z. Shen, X. Li, Q. Zhou, Y. Sun, T. Wang, Y. Liu and Q. Gao, Gradient Adsorption of Methylene Blue and Crystal Violet onto Compound Microporous Silica from Aqueous Medium, ACS Omega 5 (2020) 28382-28392.

DOI: 10.1021/acsomega.0c04437

Google Scholar

[22] C. J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, first ed., Academic Press, Harcourt Brace Jovanovich Publishers, Boston, San Diego, New York, London, Sydney, Tokyo, Toronto, 1990.

DOI: 10.1007/bf02913018

Google Scholar

[23] S.K. Parida, S. Dash, S. Patel and B.K. Mishra, Adsorption of organic molecules on silica surface, Adv. Colloid Interface Sci. 121 (2006) 77-110.

DOI: 10.1016/j.cis.2006.05.028

Google Scholar

[24] G.V. Buzato, P.H.P. Olívio and A.L. de Souza, Efeito da modificação de um xerogel de silica por dodecilsulfato de sódio para a adsorção do corante violeta cristal em meio aquoso, Res., Soc. Dev. 10 (2021) e78101724470.

DOI: 10.33448/rsd-v10i17.24470

Google Scholar

[25] Y. Ma, G. Nagy, M. Siebenbürger, R. Kaur, K.M. Dooley and B. Bharti, Adsorption and Catalytic Activity of Gold Nanoparticles in Mesoporous Silica: Effect of Pore Size and Dispersion Salinity, J. Phys. Chem. C 126 (2022) 2531-2541.

DOI: 10.1021/acs.jpcc.1c09573

Google Scholar

[26] R.F. do Nascimento, A.C.A. de Lima, C.B. Vidal, D.Q. Melo and G.S.C. Raulino, Adsorção: Aspectos teóricos e aplicações ambientais, first ed., Imprensa Universitária da Universidade Federal do Ceará, Fortaleza, 2014.

Google Scholar

[27] Y.S. Ho and G. McKay, Pseudo-Second Order Model for Sorption Processes, Process Biochem. 34 (1999) 451-465.

DOI: 10.1016/s0032-9592(98)00112-5

Google Scholar

[28] Y.S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics 59 (2004) 171-177.

DOI: 10.1023/b:scie.0000013305.99473.cf

Google Scholar

[29] A.H. Karim, A.A. Jalil, S. Triwahyono, S.M. Sidik, N.H.N. Kamarudin, R. Jusoh, N.W.C. Jusoh and B.C. Hammed, Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue, J. Colloid Interface Sci. 386 (2012) 307-314.

DOI: 10.1016/j.jcis.2012.07.043

Google Scholar

[30] J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati and S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater. 162 (2009) 616-645.

DOI: 10.1016/j.jhazmat.2008.06.042

Google Scholar

[31] I. Langmuir, The constitution and fundamental properties of solids and liquids. II. liquids, J. Am. Chem. Soc. 39 (1917) 1848-1906.

DOI: 10.1021/ja02254a006

Google Scholar

[32] M. Greluk and Z. Hubicki, Kinetics, isotherm and thermodynamic studies of Reactive, Black 5 removal by acid acrylic resins, Chem. Eng. J. 162 (2010) 919-926.

DOI: 10.1016/j.cej.2010.06.043

Google Scholar

[33] A.Da̧browski, Adsorption-from theory to practice, Adv. Colloid Interface Sci. 93(2001)135-224.

Google Scholar

[34] E.P. Barrett, L.G. Joyner and P.P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc. 73 (1951) 373-380.

DOI: 10.1021/ja01145a126

Google Scholar

[35] N. B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, third ed., Academic Press, New York, 1990.

Google Scholar

[36] Z. Dudás, A. Len, C. Ianăși and G. Paladini, Structural modifications caused by the increasing MTES amount in hybrid MTES/TEOS-based silica xerogels, Mater. Charact. 167 (2020) 110519-110529.

DOI: 10.1016/j.matchar.2020.110519

Google Scholar

[37] Y. Hannachi and A. Hafidh, Preparation and characterization of novel bi-functionalized xerogel for removal of methylene blue and lead ions from aqueous solution in batch and fixed-bed modes: RSM optimization, kinetic and equilibrium studies, J. Saudi Chem. Soc. 24 (2020) 505-519.

DOI: 10.1016/j.jscs.2020.05.002

Google Scholar

[38] S. Rasalingam, R. Peng and R.T. Koodali, An investigation into the effect of porosities on the adsorption of rhodamine B using titania-silica mixed oxide xerogels, J. Environ. Manage. 128 (2013) 530-539.

DOI: 10.1016/j.jenvman.2013.06.014

Google Scholar

[39] S. Nagappan, Y. Jeon, S.S. Park and C.S. Ha, Hexadecyltrimethylammonium Bromide Surfactant-Supported Silica Material for the Effective Adsorption of Metanil Yellow Dye, ACS Omega 4 (2019) 8548-8558.

DOI: 10.1021/acsomega.9b00533

Google Scholar

[40] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051-1069.

DOI: 10.1515/pac-2014-1117

Google Scholar

[41] R. Bongur, D. Le Nouen, F. Gaslain, C. Marichal, B. Lebeau and P. Guarilloff, Red 33 dye co-encapsulated with cetyltrimethylammonium in mesoporous silica materials, Dyes Pigm. 127 (2016) 1-8.

DOI: 10.1016/j.dyepig.2015.12.006

Google Scholar

[42] A. Roghanizad, M.K. Abdolmaleki, S.M. Ghoreishi and M. Dinari, One-pot synthesis of functionalized mesoporous fibrous silica nanospheres for dye adsorption: Isotherm, kinetic, and thermodynamic studies, J. Mol. Liq. 300 (2020) 112367-112377.

DOI: 10.1016/j.molliq.2020.113063

Google Scholar

[43] P.H. de P.Olívio, G.V. Buzato and A.L. de Souza, Influência da catálise ácida e básica na síntese de xerogéis de sílica para a adsorção de azul de metileno em meio aquoso Research, Society and Development, 10 (2021) e132101522524.

DOI: 10.33448/rsd-v10i15.22524

Google Scholar

[44] Y. Yao, B. He, F. Xu and X. Feng, Equilibrium and Kinetic Studies of Methyl Orange Adsorption on Multiwalled Carbon Nanotubes, Chem. Eng. J. 170 (2011) 82-89.

DOI: 10.1016/j.cej.2011.03.031

Google Scholar

[45] Z. Wang, Y. Li, X. Xie and Z. Wang, Bifunctional MnFe2O4/chitosan modified biochar composite for enhanced methyl orange removal based on adsorption and photo-Fenton process Colloids Surf., A, 613 (2021) 126104-126115.

DOI: 10.1016/j.colsurfa.2020.126104

Google Scholar

[46] J. Fan, Z. Zhao, W. Liu, Y. Xue and S. Yin, Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange, J. Colloid Interface Sci. 470 (2016) 229-236.

DOI: 10.1016/j.jcis.2016.02.045

Google Scholar