[1]
M. Nagumo, Fundamentals of Hydrogen Embrittlement, Springer (2016)
Google Scholar
[2]
I.M. Robertson, P. Sofronis, A. Nagao, M. Martin, S. Wang, D. Gross, K. Nygren, Hydrogen embrittlement understood, Metall. Mater. Trans. B, 46 (3) (2015), pp.1085-1103
DOI: 10.1007/s11663-015-0325-y
Google Scholar
[3]
Wang, Z., Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang, Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications, Acta Metall. Sin. (Engl. Lett.), 36 (7) (2023), p.1123–1143
DOI: 10.1007/s40195-022-01408-4
Google Scholar
[4]
D. Araújo, E. Vilar, J.P. Carrasco, A critical review of mathematical models used to determine the density of hydrogen trapping sites in steels and alloys, Int. J. Hydrogen Energ., 39 (23) (2014), pp.12194-12200
DOI: 10.1016/j.ijhydene.2014.06.036
Google Scholar
[5]
A. Thomas, J.A. Szpunar, Hydrogen diffusion and trapping in X70 pipeline steel, Int. J. Hydrogen Energ., 45 (3) (2020), pp.2390-2404
DOI: 10.1016/j.ijhydene.2019.11.096
Google Scholar
[6]
A. Alvaro, V. Olden, A. Macadre, O.M. Akselsen, Hydrogen embrittlement susceptibility of a weld simulated X70 heat affected zone under H2 pressure, Mater. Sci. Eng. A, 597 (2014), pp.29-36
DOI: 10.1016/j.msea.2013.12.042
Google Scholar
[7]
S. Pichler, A. Bendo, G. Mori, M. Safyari, M. Moshtaghi, Inhibition of grain growth by pearlite improves hydrogen embrittlement susceptibility of the ultra-low carbon ferritic steel: the influence of H-assisted crack initiation and propagation mechanisms, J. Mater. Sci., 58 (33) (2023), p.13460–13475
DOI: 10.1007/s10853-023-08856-y
Google Scholar
[8]
Y. Du, X.H. Gao, X.N. Wang, C. Sun, L.X. Du, Hydrogen Embrittlement Behaviour and Mechanism of Low Carbon Medium Manganese Steel Gas Metal Arc Welding Joints, JOM, 75 (10) (2023), p.4407–4420
DOI: 10.1007/s11837-023-06064-2
Google Scholar
[9]
X. Cheng, X. Zhang, Effect of tempering temperature on stress-assisted hydrogen diffusion and hydrogen-induced embrittlement in a high strength low alloy steel, Mater. Sci. Eng. A, 873 (2023), 144948
DOI: 10.1016/j.msea.2023.144948
Google Scholar
[10]
M.B. Djukic, G.M. Bakic, V. Sijacki Zeravcic, A. Sedmak, B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion, Eng. Fract. Mech., 216 (2019), 106528
DOI: 10.1016/j.engfracmech.2019.106528
Google Scholar
[11]
M. Cauwels, R. Depraetere, W. De Waele, K. Verbeken, T. Depover, Effect of stress triaxiality on the hydrogen embrittlement micromechanisms in a pipeline steel evaluated by fractographic analysis Mater. Sci. Eng. A, 886 (2023), 145689
DOI: 10.1016/j.msea.2023.145689
Google Scholar
[12]
M. Moallemi, S.H. Kim, S.J. Kim, Hydrogen embrittlement in a metastable high Mn TWIP-assisted steel: Correlation between grain size and hydrogen-enhanced ε-martensite, Mater. Sci. Eng. A, 885 (2023), 145595
DOI: 10.1016/j.msea.2023.145595
Google Scholar
[13]
S.S. Shishvan, G. Csányi, V.S. Deshpande, Strain rate sensitivity of the hydrogen embrittlement of ferritic steels, Acta Mater., 257 (2023), 119173
DOI: 10.1016/j.actamat.2023.119173
Google Scholar
[14]
O. Barrera, D. Bombac, Y. Chen, T. Daff, E. Galindo-Nava, P. Gong, D. Haley, R. Horton, I. Katzarov, J. Kermode, Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum, J. Mater. Sci., 53 (9) (2018), pp.6251-6290
DOI: 10.1007/s10853-017-1978-5
Google Scholar
[15]
T. Alp, T.J. Dames, B. Dogan, The effect of microstructure in the hydrogen embrittlement of a gas pipeline steel, J. Mater. Sci., 22 (6) (1987), pp.2105-2112
DOI: 10.1007/bf01132946
Google Scholar
[16]
V. Arniella, A. Zafra, G. Álvarez, J. Belzunce, C. Rodríguez, Comparative study of embrittlement of quenched and tempered steels in hydrogen environments, Int. J. Hydrogen Energ., 47 (38) (2022), pp.17056-17068
DOI: 10.1016/j.ijhydene.2022.03.203
Google Scholar
[17]
M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, Hydrogen embrittlement of industrial components: prediction, prevention, and models, Corrosion, 72 (7) (2016), pp.943-961
DOI: 10.5006/1958
Google Scholar
[18]
W. Dietzel, A. Atrens, A. Barnoush, Mechanics of modern test methods and quantitative-accelerated testing for hydrogen embrittlement, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Elsevier (2012), pp.237-273
DOI: 10.1533/9780857093899.2.237
Google Scholar
[19]
M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Hydrogen damage of steels: a case study and hydrogen embrittlement model, Eng. Fail. Anal., 58 (2015), pp.485-498
DOI: 10.1016/j.engfailanal.2015.05.017
Google Scholar
[20]
M. Mohtadi-Bonab, J. Szpunar, R. Basu, M. Eskandari, The mechanism of failure by hydrogen induced cracking in an acidic environment for API 5L X70 pipeline steel, Int. J. Hydrogen Energ., 40 (2) (2015), pp.1096-1107
DOI: 10.1016/j.ijhydene.2014.11.057
Google Scholar
[21]
H.L. Mai, X.Y. Cui, D. Scheiber, L. Romaner, S. Ringer, An understanding of hydrogen embrittlement in nickel grain boundaries from first principles, Mater. Des., 212 (2021), 110283
DOI: 10.1016/j.matdes.2021.110283
Google Scholar
[22]
I.M. Robertson, P. Sofronis, A. Nagao, M. Martin, S. Wang, D. Gross, K. Nygren, Hydrogen embrittlement understood, Metall. Mater. Trans. B., 46 (6) (2015), pp.2323-2341
DOI: 10.1007/s11661-015-2836-1
Google Scholar
[23]
M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, P. Sofronis, Recent advances on hydrogen embrittlement of structural materials, Int. J. Fract., 196 (1–2) (2015), pp.223-243
DOI: 10.1007/s10704-015-0068-4
Google Scholar
[24]
V. Singh, R. Singh, K.S. Arora, D.K. Mahajan, Hydrogen induced blister cracking and mechanical failure in X65 pipeline steels, Int. J. Hydrogen. Energ., 44 (39) (2019), pp.22039-22049
DOI: 10.1016/j.ijhydene.2019.06.098
Google Scholar
[25]
S. Lynch, Hydrogen embrittlement phenomena and mechanisms, Corros. Rev., 30 (3–4) (2012), pp.105-123
Google Scholar
[26]
H.K. Birnbaum, P. Sofronis, Hydrogen-enhanced localized plasticity - A mechanism for hydrogen-related fracture, Mater. Sci. Eng., A, 176 (1–2) (1994), pp.191-202
DOI: 10.1016/0921-5093(94)90975-x
Google Scholar
[27]
J. Shang, W. Chen, J. Zheng, Z. Hua, L. Zhang, C. Zhou, C. Gu, Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures, Scripta Mater., 189 (2020), pp.67-71
DOI: 10.1016/j.scriptamat.2020.08.011
Google Scholar
[28]
A. Barnoush, H. Vehoff, Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation, Acta Mater., 58 (16) (2010), pp.5274-5285
DOI: 10.1016/j.actamat.2010.05.057
Google Scholar
[29]
Y.S. Chen, H. Lu, J. Liang, A. Rosenthal, H. Liu, G. Sneddon, I. McCarroll, Z. Zhao, W. Li, A. Guo, Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates, Science, 367 (6474) (2020), pp.171-175
DOI: 10.1126/science.aaz0122
Google Scholar
[30]
M.R. Louthan Jr., J.A. Donovan, G.R. Caskey Jr., Hydrogen diffusion and trapping in nickel, Acta Metall., 23 (1975), p.745–749
DOI: 10.1016/0001-6160(75)90057-7
Google Scholar
[31]
B. Ladna, H.K. Birnbaum, SIMS study of hydrogen at the surface and grain boundaries of nickel bicrystals, Acta Mater., 35 (1987), p.2537–2542
DOI: 10.1016/0001-6160(87)90150-7
Google Scholar
[32]
H. Birnbaum, I. Robertson, P. Sofronis, D. Teter, Mechanisms of hydrogen related fracture-A review, 2nd International Conference on Corrosion-Deformation Interactions, CDI, 96 (1996)
Google Scholar
[33]
T. Hajilou, Y. Deng, B.R. Rogne, N. Kheradmand, A. Barnoush, In situ electrochemical microcantilever bending test: a new insight into hydrogen enhanced cracking, Scripta Mater., 132 (2017), pp.17-21
DOI: 10.1016/j.scriptamat.2017.01.019
Google Scholar
[34]
W.K. Kim, S.U. Koh, B.Y. Yang, K.Y. Kim, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels, Corrosion Sci., 50 (12) (2008), pp.3336-3342
DOI: 10.1016/j.corsci.2008.09.030
Google Scholar
[35]
J. Li, X. Gao, L. Du, Z. Liu, Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel, J. Mater. Sci. Technol., 33 (12) (2017), pp.1504-1512
DOI: 10.1016/j.jmst.2017.09.013
Google Scholar
[36]
M.L. Martin, M.J. Connolly, F.W. DelRio, A.J. Slifka, Hydrogen embrittlement in ferritic steels, Appl. Phys. Rev., 7 (4) (2020), 041301
DOI: 10.1063/5.0012851
Google Scholar
[37]
X. Cheng, H. Zhang, A new perspective on hydrogen diffusion and hydrogen embrittlement in low-alloy high strength steel, Corros. Sci., 174 (2020), 108800
DOI: 10.1016/j.corsci.2020.108800
Google Scholar
[38]
K. Sakaki, T. Kawase, M. Hirato, M. Mizuno, H. Araki, Y. Shirai, M. Nagumo, The effect of hydrogen on vacancy generation in iron by plastic deformation, Scripta Mater., 55 (11) (2006), pp.1031-1034
DOI: 10.1016/j.scriptamat.2006.08.030
Google Scholar
[39]
J. Kim, C.C. Tasan, Microstructural and micro-mechanical characterization during hydrogen charging: an in situ scanning electron microscopy study, Int. J. Hydrogen Energ., 44 (12) (2019), pp.6333-6343
DOI: 10.1016/j.ijhydene.2018.10.128
Google Scholar
[40]
E. Chatzidouros, V. Papazoglou, T. Tsiourva, D. Pantelis, Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging, Int. J. Hydrogen Energ., 36 (19) (2011), pp.12626-12643
DOI: 10.1016/j.ijhydene.2011.06.140
Google Scholar
[41]
T.A. Jack, R. Pourazizi, E. Ohaeri, J. Szpunar, J. Zhang, J. Qu, Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel, Int. J. Hydrogen Energ., 45 (35) (2020), pp.17671-17684
DOI: 10.1016/j.ijhydene.2020.04.211
Google Scholar
[42]
M. Mohtadi-Bonab, J. Szpunar, S. Razavi-Tousi, A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels, Eng. Fail. Anal., 33 (2013), pp.163-175
DOI: 10.1016/j.engfailanal.2013.04.028
Google Scholar
[43]
J. Capelle, I. Dmytrakh, Z. Azari, G. Pluvinage, Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52, Int. J. Hydrogen Energ., 38 (33) (2013), pp.14356-14363
DOI: 10.1016/j.ijhydene.2013.08.118
Google Scholar
[44]
ASTM E384, Standard test method for Knoop and Vickers hardness of materials, American Society for Testing and Materials, (2011)
Google Scholar
[45]
ASTM E8M, Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing and Materials, (2016)
Google Scholar
[46]
ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, American Society for Testing and Materials, (2018)
Google Scholar
[47]
X.C. Ren, Q.I. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su, L.J. Qiao, A nucleation mechanism of hydrogen blister in metals and alloys, Metall. Mater. Trans. A, 39A (2008), pp.88-97
DOI: 10.1007/s11661-007-9391-3
Google Scholar
[48]
A. Yaktiti, A. Dreano, J.F. Carton, F. Christien, Hydrogen diffusion and trapping in a steel containing porosities, Corros. Sci., 199 (2022), 110208
DOI: 10.1016/j.corsci.2022.110208
Google Scholar
[49]
J. Venezuela, C. Tapia-Bastidas, Q. Zhou, T. Depover, K. Verbeken, E. Gray, Q. Liu, Q. Liu, M. Zhang, A. Atrens, Determination of the equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV steel, Corros. Sci., 132 (2018), pp.90-106
DOI: 10.1016/j.corsci.2017.12.018
Google Scholar