Investigation of Hydrogen Embrittlement Effect on Microstructure Mechanical Properties and Fracture of Low-Carbon Steels

Article Preview

Abstract:

Steel hydrogen embrittlement (HE), a complex and multifaceted issue, can lead to sudden and catastrophic failure, without significant plastic deformation, making it a critical concern in the industrial sector. The present investigation focuses on the evaluation of HE effects regarding microstructure, mechanical properties degradation and type of fracture of AISI 1010 low-carbon steel, after accelerated hydrogen cathodic charging. Hydrogen was diffused electrolytically in 0.2 Μ H2SO4 solution, containing 3g/L of NH4SCN, using a cathodic current density of 10 and 20 mA/cm2, for 6 and 18 h. Mechanical properties were investigated through slow-rate tensile tests, as well as Charpy V-notch (CVN) impact tests, to determine the value of fracture toughness, both in uncharged and electrochemically pre-charged specimens. Vickers microhardness tests were conducted on the cross-sections of the hydrogen charged samples to evaluate embrittlement susceptibility, due to the presence of dissolved hydrogen. The microstructure modification was carried out through light optical (LOM) and scanning electron microscopy (SEM), in conjunction with an energy-dispersive X-ray detector (EDS). Slow scan X-ray diffraction (SSXRD) was also conducted for crystal structure analysis. The microstructure analysis showed the presence of large amounts of secondary cracks and cavities into the steel matrix, due to hydrogen diffusion and its accumulation at various sites. Hydrogen charging caused a significant gradual elongation decrease of the parent material, from 25% to 6.73%, in case of embrittlement at 20 mA/cm2 for 18h. Accordingly, after 18 h of exposure, the impact energy decrement was determined at 31.5%, at a current density of 10 mA/cm2, whereas the corresponding reduction at 20 mA/cm2 reached 68%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1121)

Pages:

35-48

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Nagumo, Fundamentals of Hydrogen Embrittlement, Springer (2016)

Google Scholar

[2] I.M. Robertson, P. Sofronis, A. Nagao, M. Martin, S. Wang, D. Gross, K. Nygren, Hydrogen embrittlement understood, Metall. Mater. Trans. B, 46 (3) (2015), pp.1085-1103

DOI: 10.1007/s11663-015-0325-y

Google Scholar

[3] Wang, Z., Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang, Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications, Acta Metall. Sin. (Engl. Lett.), 36 (7) (2023), p.1123–1143

DOI: 10.1007/s40195-022-01408-4

Google Scholar

[4] D. Araújo, E. Vilar, J.P. Carrasco, A critical review of mathematical models used to determine the density of hydrogen trapping sites in steels and alloys, Int. J. Hydrogen Energ., 39 (23) (2014), pp.12194-12200

DOI: 10.1016/j.ijhydene.2014.06.036

Google Scholar

[5] A. Thomas, J.A. Szpunar, Hydrogen diffusion and trapping in X70 pipeline steel, Int. J. Hydrogen Energ., 45 (3) (2020), pp.2390-2404

DOI: 10.1016/j.ijhydene.2019.11.096

Google Scholar

[6] A. Alvaro, V. Olden, A. Macadre, O.M. Akselsen, Hydrogen embrittlement susceptibility of a weld simulated X70 heat affected zone under H2 pressure, Mater. Sci. Eng. A, 597 (2014), pp.29-36

DOI: 10.1016/j.msea.2013.12.042

Google Scholar

[7] S. Pichler, A. Bendo, G. Mori, M. Safyari, M. Moshtaghi, Inhibition of grain growth by pearlite improves hydrogen embrittlement susceptibility of the ultra-low carbon ferritic steel: the influence of H-assisted crack initiation and propagation mechanisms, J. Mater. Sci., 58 (33) (2023), p.13460–13475

DOI: 10.1007/s10853-023-08856-y

Google Scholar

[8] Y. Du, X.H. Gao, X.N. Wang, C. Sun, L.X. Du, Hydrogen Embrittlement Behaviour and Mechanism of Low Carbon Medium Manganese Steel Gas Metal Arc Welding Joints, JOM, 75 (10) (2023), p.4407–4420

DOI: 10.1007/s11837-023-06064-2

Google Scholar

[9] X. Cheng, X. Zhang, Effect of tempering temperature on stress-assisted hydrogen diffusion and hydrogen-induced embrittlement in a high strength low alloy steel, Mater. Sci. Eng. A, 873 (2023), 144948

DOI: 10.1016/j.msea.2023.144948

Google Scholar

[10] M.B. Djukic, G.M. Bakic, V. Sijacki Zeravcic, A. Sedmak, B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion, Eng. Fract. Mech., 216 (2019), 106528

DOI: 10.1016/j.engfracmech.2019.106528

Google Scholar

[11] M. Cauwels, R. Depraetere, W. De Waele, K. Verbeken, T. Depover, Effect of stress triaxiality on the hydrogen embrittlement micromechanisms in a pipeline steel evaluated by fractographic analysis Mater. Sci. Eng. A, 886 (2023), 145689

DOI: 10.1016/j.msea.2023.145689

Google Scholar

[12] M. Moallemi, S.H. Kim, S.J. Kim, Hydrogen embrittlement in a metastable high Mn TWIP-assisted steel: Correlation between grain size and hydrogen-enhanced ε-martensite, Mater. Sci. Eng. A, 885 (2023), 145595

DOI: 10.1016/j.msea.2023.145595

Google Scholar

[13] S.S. Shishvan, G. Csányi, V.S. Deshpande, Strain rate sensitivity of the hydrogen embrittlement of ferritic steels, Acta Mater., 257 (2023), 119173

DOI: 10.1016/j.actamat.2023.119173

Google Scholar

[14] O. Barrera, D. Bombac, Y. Chen, T. Daff, E. Galindo-Nava, P. Gong, D. Haley, R. Horton, I. Katzarov, J. Kermode, Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum, J. Mater. Sci., 53 (9) (2018), pp.6251-6290

DOI: 10.1007/s10853-017-1978-5

Google Scholar

[15] T. Alp, T.J. Dames, B. Dogan, The effect of microstructure in the hydrogen embrittlement of a gas pipeline steel, J. Mater. Sci., 22 (6) (1987), pp.2105-2112

DOI: 10.1007/bf01132946

Google Scholar

[16] V. Arniella, A. Zafra, G. Álvarez, J. Belzunce, C. Rodríguez, Comparative study of embrittlement of quenched and tempered steels in hydrogen environments, Int. J. Hydrogen Energ., 47 (38) (2022), pp.17056-17068

DOI: 10.1016/j.ijhydene.2022.03.203

Google Scholar

[17] M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, Hydrogen embrittlement of industrial components: prediction, prevention, and models, Corrosion, 72 (7) (2016), pp.943-961

DOI: 10.5006/1958

Google Scholar

[18] W. Dietzel, A. Atrens, A. Barnoush, Mechanics of modern test methods and quantitative-accelerated testing for hydrogen embrittlement, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Elsevier (2012), pp.237-273

DOI: 10.1533/9780857093899.2.237

Google Scholar

[19] M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Hydrogen damage of steels: a case study and hydrogen embrittlement model, Eng. Fail. Anal., 58 (2015), pp.485-498

DOI: 10.1016/j.engfailanal.2015.05.017

Google Scholar

[20] M. Mohtadi-Bonab, J. Szpunar, R. Basu, M. Eskandari, The mechanism of failure by hydrogen induced cracking in an acidic environment for API 5L X70 pipeline steel, Int. J. Hydrogen Energ., 40 (2) (2015), pp.1096-1107

DOI: 10.1016/j.ijhydene.2014.11.057

Google Scholar

[21] H.L. Mai, X.Y. Cui, D. Scheiber, L. Romaner, S. Ringer, An understanding of hydrogen embrittlement in nickel grain boundaries from first principles, Mater. Des., 212 (2021), 110283

DOI: 10.1016/j.matdes.2021.110283

Google Scholar

[22] I.M. Robertson, P. Sofronis, A. Nagao, M. Martin, S. Wang, D. Gross, K. Nygren, Hydrogen embrittlement understood, Metall. Mater. Trans. B., 46 (6) (2015), pp.2323-2341

DOI: 10.1007/s11661-015-2836-1

Google Scholar

[23] M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, P. Sofronis, Recent advances on hydrogen embrittlement of structural materials, Int. J. Fract., 196 (1–2) (2015), pp.223-243

DOI: 10.1007/s10704-015-0068-4

Google Scholar

[24] V. Singh, R. Singh, K.S. Arora, D.K. Mahajan, Hydrogen induced blister cracking and mechanical failure in X65 pipeline steels, Int. J. Hydrogen. Energ., 44 (39) (2019), pp.22039-22049

DOI: 10.1016/j.ijhydene.2019.06.098

Google Scholar

[25] S. Lynch, Hydrogen embrittlement phenomena and mechanisms, Corros. Rev., 30 (3–4) (2012), pp.105-123

Google Scholar

[26] H.K. Birnbaum, P. Sofronis, Hydrogen-enhanced localized plasticity - A mechanism for hydrogen-related fracture, Mater. Sci. Eng., A, 176 (1–2) (1994), pp.191-202

DOI: 10.1016/0921-5093(94)90975-x

Google Scholar

[27] J. Shang, W. Chen, J. Zheng, Z. Hua, L. Zhang, C. Zhou, C. Gu, Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures, Scripta Mater., 189 (2020), pp.67-71

DOI: 10.1016/j.scriptamat.2020.08.011

Google Scholar

[28] A. Barnoush, H. Vehoff, Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation, Acta Mater., 58 (16) (2010), pp.5274-5285

DOI: 10.1016/j.actamat.2010.05.057

Google Scholar

[29] Y.S. Chen, H. Lu, J. Liang, A. Rosenthal, H. Liu, G. Sneddon, I. McCarroll, Z. Zhao, W. Li, A. Guo, Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates, Science, 367 (6474) (2020), pp.171-175

DOI: 10.1126/science.aaz0122

Google Scholar

[30] M.R. Louthan Jr., J.A. Donovan, G.R. Caskey Jr., Hydrogen diffusion and trapping in nickel, Acta Metall., 23 (1975), p.745–749

DOI: 10.1016/0001-6160(75)90057-7

Google Scholar

[31] B. Ladna, H.K. Birnbaum, SIMS study of hydrogen at the surface and grain boundaries of nickel bicrystals, Acta Mater., 35 (1987), p.2537–2542

DOI: 10.1016/0001-6160(87)90150-7

Google Scholar

[32] H. Birnbaum, I. Robertson, P. Sofronis, D. Teter, Mechanisms of hydrogen related fracture-A review, 2nd International Conference on Corrosion-Deformation Interactions, CDI, 96 (1996)

Google Scholar

[33] T. Hajilou, Y. Deng, B.R. Rogne, N. Kheradmand, A. Barnoush, In situ electrochemical microcantilever bending test: a new insight into hydrogen enhanced cracking, Scripta Mater., 132 (2017), pp.17-21

DOI: 10.1016/j.scriptamat.2017.01.019

Google Scholar

[34] W.K. Kim, S.U. Koh, B.Y. Yang, K.Y. Kim, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels, Corrosion Sci., 50 (12) (2008), pp.3336-3342

DOI: 10.1016/j.corsci.2008.09.030

Google Scholar

[35] J. Li, X. Gao, L. Du, Z. Liu, Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel, J. Mater. Sci. Technol., 33 (12) (2017), pp.1504-1512

DOI: 10.1016/j.jmst.2017.09.013

Google Scholar

[36] M.L. Martin, M.J. Connolly, F.W. DelRio, A.J. Slifka, Hydrogen embrittlement in ferritic steels, Appl. Phys. Rev., 7 (4) (2020), 041301

DOI: 10.1063/5.0012851

Google Scholar

[37] X. Cheng, H. Zhang, A new perspective on hydrogen diffusion and hydrogen embrittlement in low-alloy high strength steel, Corros. Sci., 174 (2020), 108800

DOI: 10.1016/j.corsci.2020.108800

Google Scholar

[38] K. Sakaki, T. Kawase, M. Hirato, M. Mizuno, H. Araki, Y. Shirai, M. Nagumo, The effect of hydrogen on vacancy generation in iron by plastic deformation, Scripta Mater., 55 (11) (2006), pp.1031-1034

DOI: 10.1016/j.scriptamat.2006.08.030

Google Scholar

[39] J. Kim, C.C. Tasan, Microstructural and micro-mechanical characterization during hydrogen charging: an in situ scanning electron microscopy study, Int. J. Hydrogen Energ., 44 (12) (2019), pp.6333-6343

DOI: 10.1016/j.ijhydene.2018.10.128

Google Scholar

[40] E. Chatzidouros, V. Papazoglou, T. Tsiourva, D. Pantelis, Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging, Int. J. Hydrogen Energ., 36 (19) (2011), pp.12626-12643

DOI: 10.1016/j.ijhydene.2011.06.140

Google Scholar

[41] T.A. Jack, R. Pourazizi, E. Ohaeri, J. Szpunar, J. Zhang, J. Qu, Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel, Int. J. Hydrogen Energ., 45 (35) (2020), pp.17671-17684

DOI: 10.1016/j.ijhydene.2020.04.211

Google Scholar

[42] M. Mohtadi-Bonab, J. Szpunar, S. Razavi-Tousi, A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels, Eng. Fail. Anal., 33 (2013), pp.163-175

DOI: 10.1016/j.engfailanal.2013.04.028

Google Scholar

[43] J. Capelle, I. Dmytrakh, Z. Azari, G. Pluvinage, Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52, Int. J. Hydrogen Energ., 38 (33) (2013), pp.14356-14363

DOI: 10.1016/j.ijhydene.2013.08.118

Google Scholar

[44] ASTM E384, Standard test method for Knoop and Vickers hardness of materials, American Society for Testing and Materials, (2011)

Google Scholar

[45] ASTM E8M, Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing and Materials, (2016)

Google Scholar

[46] ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, American Society for Testing and Materials, (2018)

Google Scholar

[47] X.C. Ren, Q.I. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su, L.J. Qiao, A nucleation mechanism of hydrogen blister in metals and alloys, Metall. Mater. Trans. A, 39A (2008), pp.88-97

DOI: 10.1007/s11661-007-9391-3

Google Scholar

[48] A. Yaktiti, A. Dreano, J.F. Carton, F. Christien, Hydrogen diffusion and trapping in a steel containing porosities, Corros. Sci., 199 (2022), 110208

DOI: 10.1016/j.corsci.2022.110208

Google Scholar

[49] J. Venezuela, C. Tapia-Bastidas, Q. Zhou, T. Depover, K. Verbeken, E. Gray, Q. Liu, Q. Liu, M. Zhang, A. Atrens, Determination of the equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV steel, Corros. Sci., 132 (2018), pp.90-106

DOI: 10.1016/j.corsci.2017.12.018

Google Scholar