Calculation of Gibbs Free Energy of Iron Based Alloys Using Miedema's Model and Comparison with Experiment

Article Preview

Abstract:

The utilization of the Miedema semi-empirical model has proven to be an effective approach for the estimation of Gibbs free energy in solid solutions within binary and ternary systems. Research findings indicate that in systems such as FeAl, FeMn, FeB, FeV, FeGa, AlMn, AlGa, and AlV, the Gibbs free energy exhibits highly negative values. Conversely, systems FeSn, AlB, and AlSn demonstrate positive Gibbs free energy values, with the most negative observing at a molar fraction of 50% for Fe. These results have been corroborated through studies involving the mechanosynthesis of binary and ternary FeAl based alloys. It is thus inferred that the Miedema model can be reliably employed for predictive purposes, facilitating the estimation of Gibbs free energy and the exploration of potential multicomponent system formations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1121)

Pages:

165-174

Citation:

Online since:

May 2024

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Noakes, A.S. Arrott, M.G. Belk, S.C. Deevi, Q.Z. Huang, J.W. Lynn, R.D. Shull, D. Wu, Incommensurate spin density waves in iron aluminides, Physical Review Letters. 91 (2003) 217201.

DOI: 10.1103/physrevlett.91.217201

Google Scholar

[2] A. Manchon, N. Ryzhanova, A. Vedyayev, B. Dieny, Spin-dependent diffraction at ferromagnetic/spin spiral interface, Journal of Applied Physics. 103(2008) 07A721.

DOI: 10.1063/1.2837479

Google Scholar

[3] M. Krasnowski, T. Kulik, Nanocrystalline FeAl intermetallic produced by mechanical alloying followed by hot-pressing consolidation, Intermetallics. 15 (2007) 201-205 .

DOI: 10.1016/j.intermet.2006.05.008

Google Scholar

[4] M. Krasnowski, A. Grabias, T. Kulik, Phase transformations during mechanical alloying of Fe–50% Al and subsequent heating of the milling product, Journal of Alloys and Compounds. 424 (2006) 119-127.

DOI: 10.1016/j.jallcom.2005.12.077

Google Scholar

[5] R.N. Nogueira, C.G. Schön, Embedded atom method study of the interactions between point defects in iron aluminides: Double defects, Intermetallics.13 (2005) 1233-1244.

DOI: 10.1016/j.intermet.2005.04.007

Google Scholar

[6] D.G. Morris, The stress anomaly in FeAl–Fe3Al alloys, Intermetallics. 13.12(2005) 1255-1342.

DOI: 10.1016/j.intermet.2004.08.012

Google Scholar

[7] Q. Zeng, I. Baker, Magnetic properties and thermal ordering of mechanically alloyed Fe-40 at% Al, Intermetallics.14 (2006) 396-405.

DOI: 10.1016/j.intermet.2005.07.005

Google Scholar

[8] C.T. Liu, E.P. George, P.J. Maziasz, J.H. Schneibel, Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design, Materials Science and Engineering. A 258 (1998) 84-98.

DOI: 10.1016/s0921-5093(98)00921-6

Google Scholar

[9] O. Kubashevsky, Metallurgija. Moscow, 1985.

Google Scholar

[10] T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker, American Society for Metals. 1986.

Google Scholar

[11] Y. X. Liu, F. C. Yin, J. X. Hu, L. I. Zhi, S. H. Cheng, Phase equilibria of Al-Fe-Sn ternary system, Transactions of Nonferrous Metals Society of China. 28. 2 (2018) 282-289 .

DOI: 10.1016/s1003-6326(18)64661-8

Google Scholar

[12] V. Raghavan, Al-Fe-Mn (aluminum-iron-manganese), Journal of Phase Equilibria and Diffusion, 28. 4 (2007) 371-373 .

DOI: 10.1007/s11669-007-9096-8

Google Scholar

[13] R. Brajpuriya, P. Sharm, S. Jani, S. Kaimal, T. Shripathi, N. Lakshmi, K. Venugopalan, Correlation between microstructure, magnetic and electronic properties of Fe1− xAlx (0.2≤ x≤ 0.6) alloys produced by arc melting, Applied surface science. 257.1 (2010) 10-16.

DOI: 10.1016/j.apsusc.2010.06.008

Google Scholar

[14] B.K. Kuanr, M. Buchmeier, D.E. Buergler, P. Gruenberg, Exchange coupling of molecular-beam-epitaxy-grown Fe/Al/Fe trilayers by dynamic techniques, Journal of applied physics. 91.10 (2002) 7209-7211.

DOI: 10.1063/1.1448803

Google Scholar

[15] F. Hadef, Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review, Journal of Magnetism and Magnetic Materials. 419 (2016) 105-118.

DOI: 10.1016/j.jmmm.2016.06.021

Google Scholar

[16] O. Ikeda, I. Ohnuma, R. Kainuma, K. Ishida, Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe–Al system, Intermetallics. 9.9 (2001) 755-761 .

DOI: 10.1016/s0966-9795(01)00058-9

Google Scholar

[17] C.G. Schön, G. Inden, L.T.F. Eleno, Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions, International Journal of Materials Research. 95.6 (2022) 459-463 .

DOI: 10.1515/ijmr-2004-0094

Google Scholar

[18] B. Sundman, I. Ohnuma, N. Dupin, U. R. Kattner, S. G. Fries, An assessment of the entire Al–Fe system including D03 ordering, Acta Materialia. 57 (2009) 2896–2908.

DOI: 10.1016/j.actamat.2009.02.046

Google Scholar

[19] S.L. Shang, H. Sun, B. Pan, Y. Wang, A.M. Krajewski, M. Banu, Z.K. Liu, Forming mechanism of equilibrium and non-equilibrium metallurgical phases in dissimilar aluminum/steel (Al–Fe) joints, Scientific reports. 11.1 (2021) 24251.‏

DOI: 10.1038/s41598-021-03578-0

Google Scholar

[20] M.W. Safeen, P. Russo Spena, Main issues in quality of friction stir welding joints of aluminum alloy and steel sheets, Metals (Basel). 9 (2019) 610 .

DOI: 10.3390/met9050610

Google Scholar

[21] S.A. Hussein, A.S.M. Tahir, A.B. Hadzley, Characteristics of aluminum-to-steel joint made by friction stir welding: A review, Materials Today Communications. 5 (20154) 32-49.

DOI: 10.1016/j.mtcomm.2015.09.004

Google Scholar

[22] M.V. Matyunina, V.V. Sokolovskiy, M.A. Zagrebin, O.O. Pavlukhina, V.D. Buchelnikov, Phase Diagram of Fе-Al Alloys: A Study from First Principles, Bulletin of the Russian Academy of Sciences: Physics. 83 (2019). 844-846.‏

DOI: 10.3103/s1062873819070268

Google Scholar

[23] M.E Matsnev, V.S. Rusakov , Mossbauer spectroscopy in materials science-2012: proceedings of the international conference MSMS-12. Olomouc, Czech Republic,11–15 June, 2012.

Google Scholar

[24] R. N Wang, Y.He, J. Y.Feng, Explanation of the enhancement of NiSi thermal stability according to TFD equations and Miedema's model. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 222(2004) 462-468.‏

DOI: 10.1016/j.nimb.2004.02.023

Google Scholar

[25] A.K. Alsaedi, F.S. Abbas, A.S. Alaboodi, A.A. Abojassim, Estimation of thermodynamic parameters of Ni-Si base alloys using the semi-empirical Miedema model, Malaysian Journal of Science. 41 (2022) 22-27.

DOI: 10.22452/mjs.vol41no3.3

Google Scholar

[26] R. F. Zhang, S. H. Zhang, Z. J. He, J. Jing, S. H. Sheng, Miedema Calculator: A thermodynamic platform for predicting formation enthalpies of alloys within framework of Miedema's Theory, Computer Physics Communications. 209(2016) 58-69‏.

DOI: 10.1016/j.cpc.2016.08.013

Google Scholar

[27] H. Li, X. Sun, S. Zhang, Calculation of thermodynamic properties of Cu-Ce binary alloy and precipitation behavior of Cu6Ce phase, Materials transactions. 55(2014), 1816-1819‏.

DOI: 10.2320/matertrans.m2014319

Google Scholar

[28] Aaronson, Hubert I., Masato Enomoto, Jong K. Lee, Mechanisms of diffusional phase transformations in metals and alloys. CRC Press, 2016.‏

DOI: 10.1201/b15829

Google Scholar

[29] J.R. Callister., D.William, D.G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach, John Wiley & Sons, 2020.‏

Google Scholar

[30] E.V. Voronina, A.K. AlSaedi, A.G. Ivanova, A.K. Arzhnikov, E.N. Dulov, Structural and phase transformations occurring during preparation of ordered ternary Fe–Al–M alloys (with M= Ga, B, V, and Mn) by mechanical alloying, Physics of Metals and Metallography. 120 (2019) 1213-1220.‏

DOI: 10.1134/s0031918x19120172

Google Scholar