[1]
M. D. Ganji, & A. Bakhshandeh, Functionalized single-walled carbon nanotubes interacting with glycine amino acid: DFT study, Physica B: Condensed Matter, 406(23) (2011) 4453-4459.
DOI: 10.1016/j.physb.2011.09.006
Google Scholar
[2]
Y. Geng, M. Y. Liu, J. Li, X. M. Shi, & J. K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, 39(12) (2008) 1876-1883.
DOI: 10.1016/j.compositesa.2008.09.009
Google Scholar
[3]
V. Machado de Menezes, R. Mota, I. Zanella, & S. B. Fagan, Pristine and functionalized capped carbon nanotubes under electric fields, Physica status solidi (b), 251(3) (2014) 649-654.
DOI: 10.1002/pssb.201349163
Google Scholar
[4]
H. S. Kang, & S. Jeong, Nitrogen doping and chirality of carbon nanotubes, Physical Review B, 70(23) (2004) 233411.
Google Scholar
[5]
Y. T. Li, & T. C. Chen, Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory, Nanotechnology, 20(37) (2018) 375705.
DOI: 10.1088/0957-4484/20/37/375705
Google Scholar
[6]
M. Sireesha, V. J. Babu, A. S. Kranthi Kiran, & S. Ramakrishna, A review on carbon nanotubes in biosensor devices and their applications in medicine, Nanocomposites, 4(2) (2018) 36-57.
DOI: 10.1080/20550324.2018.1478765
Google Scholar
[7]
Y. Wang, & J. T. Yeow, A review of carbon nanotubes-based gas sensors, Journal of sensors, 2009 (2009) 1-24.
Google Scholar
[8]
L. Mahdavian, M. Monajjemi, & N. Mangkorntong, Sensor response to alcohol and chemical mechanism of carbon nanotube gas sensors, Fullerenes, Nanotubes and Carbon Nanostructures, 17(5) (2009) 484-495.
DOI: 10.1080/15363830903130044
Google Scholar
[9]
B. Hawley, M. Casey, M. A. Virji, K. J. Cummings, A. Johnson, & J. Cox-Ganser, Respiratory symptoms in hospital cleaning staff exposed to a product containing hydrogen peroxide, peracetic acid, and acetic acid, Annals of work exposures and health; 62(1) (2018) 28-40.
DOI: 10.1093/annweh/wxx087
Google Scholar
[10]
K.G. Elhage, K. St. Claire, & S. Daveluy, Acetic acid and the skin: a review of vinegar in dermatology, International Journal of Dermatology, 61(7) (2022) 804-811.
DOI: 10.1111/ijd.15804
Google Scholar
[11]
L. Ernstgård, A. Iregren, B. Sjögren, & G. Johanson, Acute effects of exposure to vapours of acetic acid in humans, Toxicology letters, 165(1) (2006) 22-30.
DOI: 10.1016/j.toxlet.2006.01.010
Google Scholar
[12]
F. Gagnaire, B. Marignac, G. Hecht, & M. Héry, Sensory irritation of acetic acid, hydrogen peroxide, peroxyacetic acid and their mixture in mice, Annals of Occupational Hygiene, 46(1) (2002) 97-102.
DOI: 10.1093/annhyg/mef005
Google Scholar
[13]
K. B. Wiberg, C. M. Hadad, T. J. LePage, C. M. Breneman, & M. J. Frisch, Analysis of the effect of electron correlation on charge density distributions, The Journal of Physical Chemistry, 96(2) (1992) 671-679.
DOI: 10.1021/j100181a030
Google Scholar
[14]
J. Hafner, Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond, Journal of computational chemistry, 29(13) (2008) 2044-2078.
DOI: 10.1002/jcc.21057
Google Scholar
[15]
D. Tozini, M. Forti, P. Gargano, P. R. Alonso, G. H. Rubiolo, Charge difference calculation in Fe/Fe3O4 interfaces from DFT results, Procedia Materials Science, 9 (2015) 612-618.
DOI: 10.1016/j.mspro.2015.05.037
Google Scholar
[16]
C. Wang, G. Zhou, H. Liu, J. Wu, Y. Qiu, B. L. Gu, & W. Duan, Chemical functionalization of carbon nanotubes by carboxyl groups on stone-wales defects: a density functional theory study, The Journal of Physical Chemistry B, 110(21) (2006) 10266-10271.
DOI: 10.1021/jp060412f
Google Scholar
[17]
D. H. Lim, A. S. Negreira, & J. Wilcox, DFT studies on the interaction of defective graphene-supported Fe and Al nanoparticles, The Journal of Physical Chemistry C, 115(18) (2011) 8961-8970.
DOI: 10.1021/jp2012914
Google Scholar
[18]
K. Koumpouras, & J. A. Larsson, Distinguishing between chemical bonding and physical binding using electron localization function (ELF), Journal of Physics: Condensed Matter, 32(31) (2020) 315502.
DOI: 10.1088/1361-648x/ab7fd8
Google Scholar
[19]
A.A. G. Pido, A.A.Z. Munio, & L.C.C. Ambolode II, Ab Initio Calculations of the Atomic Structure, Stability, and Electronic Properties of (C6H10O5)2 Encapsulation into Hydrogen-Doped Carbon Nanotube, Nano Hybrids and Composites, 38 (2023) 53-62.
DOI: 10.4028/p-3uk80a
Google Scholar
[20]
N. J. O'Connor, A. S. M. Jonayat, M. J. Janik, & T. P. Senftle, Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning, Nature Catalysis, 1(7) (2018) 531-539.
DOI: 10.1038/s41929-018-0094-5
Google Scholar
[21]
K. Qu, Y. Zheng, Y. Jiao, X. Zhang, S. Dai, & S. Z. Qiao, Polydopamine‐inspired, dual heteroatom‐doped carbon nanotubes for highly efficient overall water splitting, Advanced Energy Materials, 7(9) (2017) 1602068.
DOI: 10.1002/aenm.201602068
Google Scholar
[22]
D. Li, H. Luo, J. Cai, Y. Cheng, X. Shao, & C. Dong, First-principles study of H, O, and N adsorption on metal embedded carbon nanotubes, Applied Surface Science, 403 (2017) 645-651.
DOI: 10.1016/j.apsusc.2017.01.214
Google Scholar
[23]
P. Bhauriyal, A. Mahata, & B. Pathak, A Computational Study of a Single‐Walled Carbon‐Nanotube‐Based Ultrafast High‐Capacity Aluminum Battery, Chemistry–An Asian Journal, 12(15) (2017) 1944-1951.
DOI: 10.1002/asia.201700570
Google Scholar
[24]
N. Kuganathan, & S. Ganeshalingam, Encapsulation and Adsorption of Halogens into Single-Walled Carbon Nanotubes, In Micro, 1(1) (2021) 140-150.
DOI: 10.3390/micro1010011
Google Scholar
[25]
A.A.Z. Munio, D. C. Domato, A. A. G. Pido, Y. J. Lagud, & L. C. C. Ambolode II, A First-Principles Study on the Chemisorption of Arsenic on the Cellulose Biopolymer, Biointerface Research in Applied Chemistry, 13(6) (2023) 9.
DOI: 10.4028/p-ppefx7
Google Scholar
[26]
A. A. Z. Munio, D. C. Domato, A. A. G. Pido, & L. C. C. Ambolode II, Non-Covalent Functionalization of Biphenylene Network by Cellulose and Nylon-6: A First-Principles Study. Biointerface Research in Applied Chemistry, 13(6) (2023) 10.
Google Scholar
[27]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,... & R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of physics: Condensed matter, 21(39) (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[28]
J. B. Lu, D. C. Cantu, M. T. Nguyen, J. Li, V. A. Glezakou, & R. Rousseau, Norm-conserving pseudopotentials and basis sets to explore lanthanide chemistry in complex environments, Journal of chemical theory and computation, 15(11) (2019) 5987-5997.
DOI: 10.1021/acs.jctc.9b00553
Google Scholar
[29]
A. R. Juárez, E. C. Anota, H. H. Cocoletzi, J. S. Ramírez, & M. Castro, Stability and electronic properties of armchair boron nitride/carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 25(12) (2017) 716-725.
DOI: 10.1080/1536383x.2017.1389905
Google Scholar
[30]
J.P. Perdew, K. Burke, & M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, 77(18) (1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[31]
J. Moellmann, & S. Grimme, DFT-D3 study of some molecular crystals, The Journal of Physical Chemistry C, 118(14) (2014) 7615-7621.
DOI: 10.1021/jp501237c
Google Scholar
[32]
L. Goerigk, A comprehensive overview of the DFT-D3 London-dispersion correction, Non-covalent interactions in quantum chemistry and physics, (2017) 195-219.
DOI: 10.1016/b978-0-12-809835-6.00007-4
Google Scholar
[33]
F. Bakhshi, & N. Farhadian, Co-doped graphene sheets as a novel adsorbent for hydrogen storage: DFT and DFT-D3 correction dispersion study, International Journal of Hydrogen Energy, 43(17) (2018) 8355-8364.
DOI: 10.1016/j.ijhydene.2018.02.184
Google Scholar
[34]
H. Lgaz, & H.S. Lee, First‐principles based theoretical investigation of the adsorption of alkanethiols on the iron surface: A DFT-D3 study, Journal of Molecular Liquids, 348(2022) 118071.
DOI: 10.1016/j.molliq.2021.118071
Google Scholar
[35]
A. N. Imtani, & V. K. Jindal, Bond Lengths of Single-Walled Carbon Nanotubes, arXiv preprint cond-mat/0611484, (2006).
Google Scholar
[36]
N. Krainara, S. Nokbin, P. Khongpracha, P. A. Bopp, & J. Limtrakul, Density functional calculations of structural and electronic properties of a BN-doped carbon nanotube, Carbon, 48(1) (2010) 176-183.
DOI: 10.1016/j.carbon.2009.09.001
Google Scholar
[37]
A. Díaz-Fernández, L. Chico, J. W. González, & F. Domínguez-Adame, Tuning the Fermi velocity in Dirac materials with an electric field, Scientific reports, 7(1) (2017) 8058.
DOI: 10.1038/s41598-017-08188-3
Google Scholar
[38]
K.A. Park, K. Seo, & Y.H. Lee, Adsorption of atomic hydrogen on single-walled carbon nanotubes, The Journal of Physical Chemistry B, 109(18) (2005) 8967-8972.
DOI: 10.1021/jp0500743
Google Scholar
[39]
S. Berber, & A. Oshiyama, Atomic and electronic structure of divacancies in carbon nanotubes, Physical Review B, 77(16) (2008) 165405.
DOI: 10.1103/physrevb.77.165405
Google Scholar