Exploring the Electronic Topology and Binding Mechanism of Acetic Acid Adsorption on Nitrogen and Boron Co-Doped (5, 5) SWCNT

Article Preview

Abstract:

Chemical inertness of pristine carbon nanotubes (CNTs) poses challenges on their biocompatibility. In this paper, surface modification of pristine (5, 5) single-walled carbon nanotube (SWCNT) was explored through substitutional Boron (B) and Nitrogen (N) doping forming a C38NB isomer. The electronic topology and binding mechanism of acetic acid adsorption on the isomer was then examined in the context of first-principles Density Functional Theory (DFT). Accordingly, high abundance of localized electrons between the substitutional doping sites indicates chemical binding of the substitutional atoms with the SWCNT. These are further supported by the calculated bond angles. When the acid was adsorbed on the C38NB isomer, spontaneous charge redistributions were observed which are attributed to the oxidation caused by the O atoms and the charge acceptance of the C atoms. Topological analyses revealed that the net charge transfers for all considered configurations were towards the acid. In addition, the Lowest Unoccupied Molecular Orbital (LUMO) and Highest Occupied Molecular Orbital (HOMO) revealed the nonuniform distribution of electronic charges near the Fermi level. Finally, calculations of the electron localization function (ELF) showed that there was no orbital hybridization between the acid and the isomer. Further, the absence of localized electrons between their interaction points implied a physical binding mechanism. The results of the study could be used for future opto-electronic experiments and electrochemical biosensing applications of CNTs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1121)

Pages:

155-164

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. D. Ganji, & A. Bakhshandeh, Functionalized single-walled carbon nanotubes interacting with glycine amino acid: DFT study, Physica B: Condensed Matter, 406(23) (2011) 4453-4459.

DOI: 10.1016/j.physb.2011.09.006

Google Scholar

[2] Y. Geng, M. Y. Liu, J. Li, X. M. Shi, & J. K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, 39(12) (2008) 1876-1883.

DOI: 10.1016/j.compositesa.2008.09.009

Google Scholar

[3] V. Machado de Menezes, R. Mota, I. Zanella, & S. B. Fagan, Pristine and functionalized capped carbon nanotubes under electric fields, Physica status solidi (b), 251(3) (2014) 649-654.

DOI: 10.1002/pssb.201349163

Google Scholar

[4] H. S. Kang, & S. Jeong, Nitrogen doping and chirality of carbon nanotubes, Physical Review B, 70(23) (2004) 233411.

Google Scholar

[5] Y. T. Li, & T. C. Chen, Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory, Nanotechnology, 20(37) (2018) 375705.

DOI: 10.1088/0957-4484/20/37/375705

Google Scholar

[6] M. Sireesha, V. J. Babu, A. S. Kranthi Kiran, & S. Ramakrishna, A review on carbon nanotubes in biosensor devices and their applications in medicine, Nanocomposites, 4(2) (2018) 36-57.

DOI: 10.1080/20550324.2018.1478765

Google Scholar

[7] Y. Wang, & J. T. Yeow, A review of carbon nanotubes-based gas sensors, Journal of sensors, 2009 (2009) 1-24.

Google Scholar

[8] L. Mahdavian, M. Monajjemi, & N. Mangkorntong, Sensor response to alcohol and chemical mechanism of carbon nanotube gas sensors, Fullerenes, Nanotubes and Carbon Nanostructures, 17(5) (2009) 484-495.

DOI: 10.1080/15363830903130044

Google Scholar

[9] B. Hawley, M. Casey, M. A. Virji, K. J. Cummings, A. Johnson, & J. Cox-Ganser, Respiratory symptoms in hospital cleaning staff exposed to a product containing hydrogen peroxide, peracetic acid, and acetic acid, Annals of work exposures and health; 62(1) (2018) 28-40.

DOI: 10.1093/annweh/wxx087

Google Scholar

[10] K.G. Elhage, K. St. Claire, & S. Daveluy, Acetic acid and the skin: a review of vinegar in dermatology, International Journal of Dermatology, 61(7) (2022) 804-811.

DOI: 10.1111/ijd.15804

Google Scholar

[11] L. Ernstgård, A. Iregren, B. Sjögren, & G. Johanson, Acute effects of exposure to vapours of acetic acid in humans, Toxicology letters, 165(1) (2006) 22-30.

DOI: 10.1016/j.toxlet.2006.01.010

Google Scholar

[12] F. Gagnaire, B. Marignac, G. Hecht, & M. Héry, Sensory irritation of acetic acid, hydrogen peroxide, peroxyacetic acid and their mixture in mice, Annals of Occupational Hygiene, 46(1) (2002) 97-102.

DOI: 10.1093/annhyg/mef005

Google Scholar

[13] K. B. Wiberg, C. M. Hadad, T. J. LePage, C. M. Breneman, & M. J. Frisch, Analysis of the effect of electron correlation on charge density distributions, The Journal of Physical Chemistry, 96(2) (1992) 671-679.

DOI: 10.1021/j100181a030

Google Scholar

[14] J. Hafner, Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond, Journal of computational chemistry, 29(13) (2008) 2044-2078.

DOI: 10.1002/jcc.21057

Google Scholar

[15] D. Tozini, M. Forti, P. Gargano, P. R. Alonso, G. H. Rubiolo, Charge difference calculation in Fe/Fe3O4 interfaces from DFT results, Procedia Materials Science, 9 (2015) 612-618.

DOI: 10.1016/j.mspro.2015.05.037

Google Scholar

[16] C. Wang, G. Zhou, H. Liu, J. Wu, Y. Qiu, B. L. Gu, & W. Duan, Chemical functionalization of carbon nanotubes by carboxyl groups on stone-wales defects: a density functional theory study, The Journal of Physical Chemistry B, 110(21) (2006) 10266-10271.

DOI: 10.1021/jp060412f

Google Scholar

[17] D. H. Lim, A. S. Negreira, & J. Wilcox, DFT studies on the interaction of defective graphene-supported Fe and Al nanoparticles, The Journal of Physical Chemistry C, 115(18) (2011) 8961-8970.

DOI: 10.1021/jp2012914

Google Scholar

[18] K. Koumpouras, & J. A. Larsson, Distinguishing between chemical bonding and physical binding using electron localization function (ELF), Journal of Physics: Condensed Matter, 32(31) (2020) 315502.

DOI: 10.1088/1361-648x/ab7fd8

Google Scholar

[19] A.A. G. Pido, A.A.Z. Munio, & L.C.C. Ambolode II, Ab Initio Calculations of the Atomic Structure, Stability, and Electronic Properties of (C6H10O5)2 Encapsulation into Hydrogen-Doped Carbon Nanotube, Nano Hybrids and Composites, 38 (2023) 53-62.

DOI: 10.4028/p-3uk80a

Google Scholar

[20] N. J. O'Connor, A. S. M. Jonayat, M. J. Janik, & T. P. Senftle, Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning, Nature Catalysis, 1(7) (2018) 531-539.

DOI: 10.1038/s41929-018-0094-5

Google Scholar

[21] K. Qu, Y. Zheng, Y. Jiao, X. Zhang, S. Dai, & S. Z. Qiao, Polydopamine‐inspired, dual heteroatom‐doped carbon nanotubes for highly efficient overall water splitting, Advanced Energy Materials, 7(9) (2017) 1602068.

DOI: 10.1002/aenm.201602068

Google Scholar

[22] D. Li, H. Luo, J. Cai, Y. Cheng, X. Shao, & C. Dong, First-principles study of H, O, and N adsorption on metal embedded carbon nanotubes, Applied Surface Science, 403 (2017) 645-651.

DOI: 10.1016/j.apsusc.2017.01.214

Google Scholar

[23] P. Bhauriyal, A. Mahata, & B. Pathak, A Computational Study of a Single‐Walled Carbon‐Nanotube‐Based Ultrafast High‐Capacity Aluminum Battery, Chemistry–An Asian Journal, 12(15) (2017) 1944-1951.

DOI: 10.1002/asia.201700570

Google Scholar

[24] N. Kuganathan, & S. Ganeshalingam, Encapsulation and Adsorption of Halogens into Single-Walled Carbon Nanotubes, In Micro, 1(1) (2021) 140-150.

DOI: 10.3390/micro1010011

Google Scholar

[25] A.A.Z. Munio, D. C. Domato, A. A. G. Pido, Y. J. Lagud, & L. C. C. Ambolode II, A First-Principles Study on the Chemisorption of Arsenic on the Cellulose Biopolymer, Biointerface Research in Applied Chemistry, 13(6) (2023) 9.

DOI: 10.4028/p-ppefx7

Google Scholar

[26] A. A. Z. Munio, D. C. Domato, A. A. G. Pido, & L. C. C. Ambolode II, Non-Covalent Functionalization of Biphenylene Network by Cellulose and Nylon-6: A First-Principles Study. Biointerface Research in Applied Chemistry, 13(6) (2023) 10.

Google Scholar

[27] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,... & R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of physics: Condensed matter, 21(39) (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[28] J. B. Lu, D. C. Cantu, M. T. Nguyen, J. Li, V. A. Glezakou, & R. Rousseau, Norm-conserving pseudopotentials and basis sets to explore lanthanide chemistry in complex environments, Journal of chemical theory and computation, 15(11) (2019) 5987-5997.

DOI: 10.1021/acs.jctc.9b00553

Google Scholar

[29] A. R. Juárez, E. C. Anota, H. H. Cocoletzi, J. S. Ramírez, & M. Castro, Stability and electronic properties of armchair boron nitride/carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 25(12) (2017) 716-725.

DOI: 10.1080/1536383x.2017.1389905

Google Scholar

[30] J.P. Perdew, K. Burke, & M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, 77(18) (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[31] J. Moellmann, & S. Grimme, DFT-D3 study of some molecular crystals, The Journal of Physical Chemistry C, 118(14) (2014) 7615-7621.

DOI: 10.1021/jp501237c

Google Scholar

[32] L. Goerigk, A comprehensive overview of the DFT-D3 London-dispersion correction, Non-covalent interactions in quantum chemistry and physics, (2017) 195-219.

DOI: 10.1016/b978-0-12-809835-6.00007-4

Google Scholar

[33] F. Bakhshi, & N. Farhadian, Co-doped graphene sheets as a novel adsorbent for hydrogen storage: DFT and DFT-D3 correction dispersion study, International Journal of Hydrogen Energy, 43(17) (2018) 8355-8364.

DOI: 10.1016/j.ijhydene.2018.02.184

Google Scholar

[34] H. Lgaz, & H.S. Lee, First‐principles based theoretical investigation of the adsorption of alkanethiols on the iron surface: A DFT-D3 study, Journal of Molecular Liquids, 348(2022) 118071.

DOI: 10.1016/j.molliq.2021.118071

Google Scholar

[35] A. N. Imtani, & V. K. Jindal, Bond Lengths of Single-Walled Carbon Nanotubes, arXiv preprint cond-mat/0611484, (2006).

Google Scholar

[36] N. Krainara, S. Nokbin, P. Khongpracha, P. A. Bopp, & J. Limtrakul, Density functional calculations of structural and electronic properties of a BN-doped carbon nanotube, Carbon, 48(1) (2010) 176-183.

DOI: 10.1016/j.carbon.2009.09.001

Google Scholar

[37] A. Díaz-Fernández, L. Chico, J. W. González, & F. Domínguez-Adame, Tuning the Fermi velocity in Dirac materials with an electric field, Scientific reports, 7(1) (2017) 8058.

DOI: 10.1038/s41598-017-08188-3

Google Scholar

[38] K.A. Park, K. Seo, & Y.H. Lee, Adsorption of atomic hydrogen on single-walled carbon nanotubes, The Journal of Physical Chemistry B, 109(18) (2005) 8967-8972.

DOI: 10.1021/jp0500743

Google Scholar

[39] S. Berber, & A. Oshiyama, Atomic and electronic structure of divacancies in carbon nanotubes, Physical Review B, 77(16) (2008) 165405.

DOI: 10.1103/physrevb.77.165405

Google Scholar