Adobe Block Design with Addition of Fiberglass to Improve the Compression Resistance in the District of Saylla, Province and Department of Cusco

Article Preview

Abstract:

This article discusses improving the low compression resistance of adobe houses in Saylla, Cusco, by incorporating fiberglass. It reviews studies employing synthetic materials and suggests adobe blocks with varying proportions of fiberglass. These adobe blocks to be studied will be produced in a traditional, regulated manner, with the addition of fiberglass at 0.10%, 0.50%, and 1.00%. Three samples of each type will be tested for reliable results. Compression tests show that traditional adobe fails to meet standards, while regulated adobe with fiberglass significantly enhances resistance. Adding 1.00% fiberglass results in a 123.20% increase in compression strength, reaching 1.634 MPa. The study concludes that fiberglass effectively strengthens adobe, providing practical applications for sustainable construction in Saylla, Cusco.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1137)

Pages:

73-79

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cortez, S., & Alexis, G. (2021). Desarrollo de funciones de vulnerabilidad para vivien-das de adobe de uno y dos niveles en la ciudad del Cusco. Pontificia Universidad Católica del Perú.

DOI: 10.24265/liberabit.2021.v27n2.02

Google Scholar

[2] Moscoso-Cordero, M. S. (2010). El adobe, sus características y el confort térmico. Congr. Int. online Filos. la Sustentabilidad Vivienda Tradic."Transformando comunidades hacia el Desarro. local, 71-75.

Google Scholar

[3] Matus, R.A., Tizapa, S.S., & Quiroz, P.C.(2013). Caracterización experimental de las propiedades mecánicas de la mampostería de adobe del sur de México. Ingeniería, 17(3), 167-177.

DOI: 10.3989/ic.12.084

Google Scholar

[4] Gandia, R. M., Gomes, F., Corrêa, A.A.R., Rodrigues, M. C., & Mendes, R. F. (2019). Physical, mechanical and thermal behavior of adobe stabilized with glass fiber rein-forced polymer waste. Construction and Building Materials, 222, 168-182.

DOI: 10.1016/j.conbuildmat.2019.06.107

Google Scholar

[5] Fages, J. M., Tarque, N., Rodríguez-Mariscal, J. D., & Solís, M. (2022). Calibration of a total strain crack model for adobe masonry based on compression and diagonal compression tests. Construction and Building Materials, 352(128965), 128965.

DOI: 10.1016/j.conbuildmat.2022.128965

Google Scholar

[6] Babé, C., Kidmo, D. K., Tom, A., Mvondo, R. R. N., Kola, B., & Djongyang, N. (2021). Effect of neem (Azadirachta Indica) fibers on mechanical, thermal and durability properties of adobe bricks. Energy Reports, 7, 686–698.

DOI: 10.1016/j.egyr.2021.07.085

Google Scholar

[7] Zhang, J., Pang, S., Gao, J., Deng, E., Wang, H., & Zhao, J. (2020). Experimental study on seismic behaviour of adobe wall reinforced with cold–formed thin–walled steel. Thin-walled Structures, 147, 106493.

DOI: 10.1016/j.tws.2019.106493

Google Scholar

[8] Donkor, P., & Obonyo, E. (2015). Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers. Materials & Design, 83, 813-819.

DOI: 10.1016/j.matdes.2015.06.017

Google Scholar