[1]
Zhao L, Shen C Y, Qiu T. Studies on the (1-x)(Mg0.7Zn0.3)TiO3-x(Ca0.61La0.26)TiO3 microwave dielectric ceramics. Journal of Inorganic Material, 26(2): 219~224 (2011).
Google Scholar
[2]
Liu, J, Liang, B L, Zhang, J J, et al. Research Progress on Microwave Dielectric Ceramics Prepared via Microwave Sintering. Journal of the American Ceramic Society, 36(3): 37–42 (2022).
Google Scholar
[3]
Demirskyi D, Cheng J, Agrawal D, et al. Densification and grain growth during microwave sintering of titanium diboride. Scripta Materialia, 69(8): 610–613 (2013).
DOI: 10.1016/j.scriptamat.2013.07.012
Google Scholar
[4]
Cai W, Fu C, Hu W, et al. Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics. Journal of Alloys and Compounds, 554: 64–71 (2013).
DOI: 10.1016/j.jallcom.2012.11.154
Google Scholar
[5]
Tan Y, Shen C S, Qiu T. Preliminary study on microwave sintered Ba6-3xSm8+2xTi18O54 ceramic materials. Piezoelectrics and acousto-optical, 32(2): 301-303 (2010).
Google Scholar
[6]
Li J M, Qiu T. Microwave sintering of Ca0.6La0.2667TiO3 microwave dielectric ceramics. International Journal of Minerals, Metallurgy and Materials,3(19): 245-247 (2012).
DOI: 10.1007/s12613-012-0546-x
Google Scholar
[7]
Mohammadi, S, Shokrollahi, H, Bashi, MH. Effects of Gd on the magnetic, electric and structural properties of BiFeO3 nanstructures synthesized by co-precipitation followed by microwave sintering. Journal of magnetism and magnetic materials, 375: 38-42 (2015).
DOI: 10.1016/j.jmmm.2014.09.050
Google Scholar
[8]
Yu J, Shen C S. Study on microwave sintering of ceramics in 0.92MgAl2O4-0.08(Ca0.8Sr0.2)TiO3 medium. Electronic components and materials, 34(5): 1-4 (2015).
Google Scholar
[9]
ZHAO L, SHEN C Y, QIU T. Studies on the (1-x)(Mg0.7Zn0.3)TiO3-x(Ca0.61La0.26)TiO3 microwave dielectric ceramics[J]. Journal of Inorganic Material, 26(2): 219~224(2011).
Google Scholar
[10]
Liou Y C, Yang S L. Calcium-doped MgTiO3-MgTi2O5 ceramics prepared using a reaction-sintering process. Materials Science and Engineering, 142(2/3): 116−120(2007).
DOI: 10.1016/j.mseb.2007.06.027
Google Scholar
[11]
Gogoi P, Singh LR, Pamu D. Characterization of Zn doped MgTiO3 ceramics: an approach for RF capacitor applications. Journal of Materials Science-Materials in Electronics, 28(16): 11712-11721(2017).
DOI: 10.1007/s10854-017-6975-6
Google Scholar
[12]
Geng H.X., Mei A., Dong C., et al. Investigation of structure and electrical properties of Li0.5La0.5TiO3 ceramics via microwave sintering. J. Alloys Compd. , 481(2): 555 (2009).
DOI: 10.1016/j.jallcom.2009.03.038
Google Scholar
[13]
Huang C L, Li G J, Wang J J. Microwave dielectric properties of (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5La0.5)TiO3 ceramic system[J]. J. Alloys. Compd., 472: 497-501 (2009).
DOI: 10.1016/j.jallcom.2008.05.007
Google Scholar
[14]
Li LX, Li S, Tian T, et al. Microwave dielectric properties of (1-x)MgTiO3-x(Ca0.6Na0.2Sm0.2)TiO3 ceramic system. Journal of Materials Science-Materials in Electronics, 27(2): 1286-1292(2016).
DOI: 10.1007/s10854-015-3887-1
Google Scholar
[15]
Cho WW, Kakimoto K, Ohsato H. High-Q microwave dielectric SrTiO3-doped MgTiO3 materials with near-zero temperature coefficient of resonant frequency. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 43(9A): 6221-6224(2004).
DOI: 10.1143/jjap.43.6221
Google Scholar
[16]
Li L, Ye J, Zhang S. Influence of CaTiO3 modification on microstructures and microwave dielectric properties of Mg0.97Zn0.03TiO3 ceramics doped with 0.5mol% Zn-excess [J]. Journal of Alloys and Compounds, 2015, 648: 184-189.
DOI: 10.1016/j.jallcom.2015.06.210
Google Scholar
[17]
Gogoi P, Singh LR, Pamu D. Characterization of Zn doped MgTiO3ceramics: an approach for RF capacitor applications[J]. Journal of materials science: materials in electronics, 2017, 28: 11712-11721.
DOI: 10.1007/s10854-017-6975-6
Google Scholar
[18]
Yu Y, Wang YJ, Guo WJ, et al. Grain size engineered 0.95MgTiO3-0.05CaTiO3 ceramics with excellent microwave dielectric properties and prominent mechanical perfor-mance[J]. Journal of the American Ceramic Society, 2022, 105(1): 299-307.
DOI: 10.1111/jace.18045
Google Scholar
[19]
Yuan S F, Gan L, Ning F F, et al. High-Q×f 0.95MgTiO3–0.05CaTiO3 microwave dielectric ceramics with the addition of Li F Sintered at medium temperatures[J]. Ceramics International,2018, 44(16):20566-20569.
DOI: 10.1016/j.ceramint.2018.07.202
Google Scholar
[20]
Rabha S, Dobbidi P. Structural electrical properties and stability in microwave dielectric properties of (1-x) MgTiO3-x SrTiO3 composite ceramics[J]. Journal of Alloys and Compounds, 2021, 872: 159726.
DOI: 10.1016/j.jallcom.2021.159726
Google Scholar